TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. The measurement accuracy of instrumented ship structures under local ice loads using strain gauges
 
Options

The measurement accuracy of instrumented ship structures under local ice loads using strain gauges

Publikationstyp
Journal Article
Date Issued
2021-03
Sprache
English
Author(s)
Böhm, Angelo  orcid-logo
von Bock und Polach, Rüdiger Ulrich Franz  orcid-logo
Herrnring, Hauke  orcid-logo
Ehlers, Sören  
Institut
Konstruktion und Festigkeit von Schiffen M-10  
TORE-URI
http://hdl.handle.net/11420/8375
Journal
Marine structures  
Volume
76
Article Number
102919
Citation
Marine Structures (76): 102919 (2021-03)
Publisher DOI
10.1016/j.marstruc.2020.102919
Scopus ID
2-s2.0-85098456656
Strain gauges are commonly used for the instrumentation of ship structures to measure ice loads on the basis of shear strain differences. Finite Element Analysis (FEA) is used to determine the load–strain relation of the instrumented area by calculating an Influence Coefficient Matrix (ICM). However, the accuracy of the measurement method and the influence of the load location and load length on the accuracy of the load determination are rarely assessed. Consequently, this paper identifies the accuracy of the ICM, discusses which structures are suitable for measurements of shear strain differences and presents possible improvements regarding these measurements. As load cases are systematically varied over a finite element model, the external load is recalculated based on the resulting shear strains. The number of strain gauges used for the measurement of shear strains has a significant impact on the ICM. For common instrumentation it was found that the ice load can only be accurately determined, if the ice load acts within the instrumented area. To overcome this limitation, an approach to determine the load location is presented among further recommendations.
Subjects
Accuracy
Ice load
Influence Coefficient Matrix
Load length
Load location
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback