TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. A note on the boundary shape of matrix polytope products
 
Options

A note on the boundary shape of matrix polytope products

Publikationstyp
Journal Article
Date Issued
2014
Sprache
English
Author(s)
Bünger, Florian  
Institut
Zuverlässiges Rechnen E-19  
TORE-URI
http://hdl.handle.net/11420/7879
Journal
Reliable Computing  
Volume
20
Issue
1
Start Page
73
End Page
88
Citation
Reliable Computing 1 (20): 73-88 (2014)
Scopus ID
2-s2.0-84908211042
Publisher
[University of Louisiana at Lafayette]
Motivated by interval matrix multiplication we consider (matrix) polytopes A ⊆ ℝm,n, B ⊆ ℝn,k, m, n, k ∈ ℕ, and investigate the boundary shape of their pointwise product AB:= AB | A ∈ A,B ∈ B: We prove that AB cannot have outward curved boundary sections while inward curved sections may exist. This is achieved by a simple local extreme point analysis. Results are proved in a more general abstract setting for images of compact sets of (not necessarily finite dimensional) locally convex vector spaces under continuous multilinear mappings. They can be seen as extensions of the Zadeh-Desoer Mapping Theorem which is a fundamental tool in control theory.
Subjects
Extreme points
Pointwise interval matrix products
Pointwise matrix polytope products
DDC Class
004: Informatik
510: Mathematik
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback