Options
Temperature distribution in a new composite material for hydrogen storage : design study of different cooling concepts
Citation Link: https://doi.org/10.15480/882.3602
Publikationstyp
Conference Paper
Publikationsdatum
2019
Sprache
English
TORE-URI
Start Page
64
End Page
73
Citation
International Renewable Energy Storage Conference: 64-73 (2019)
Contribution to Conference
Publisher
Atlantic Press
A newly developed composite material has been explored based on metal hydrides in combination with polymers
enriched with highly porous carbon. As metal hydride, a RHC (reactive hydride composite) was chosen (e.g., MgH2 + 2 LiBH4).
The hydride is infiltrated into the pores of the porous carbon suppressing the long-range phase separation of the two different
hydrides by nano-confinement. The aim is to maintain fast kinetics and achieve cycle stability of the RHC (reactive hydride
composite). The combination of RHC and porous carbon is then integrated into a polymer film to allow an easy and safe handling
of the material. To produce a storage system out of such a film, the thin material is rolled in the same style like a rolled membrane module; i.e., it is rolled together with a thin spacer (e.g., steel mesh) allowing an easy hydrogen access to all parts of the membrane. The last step is the implementation of the rolled storage module into the tank shell. To analyze different design concepts and the behavior of this newly developed composite storage material, extensive FEM-simulations have been realized for different cooling structures. The latter is necessary to fulfil the thermodynamic requirements and to maximize the speed of hydrogen storage. Therefore, the temperature development within the storage during hydrogen feeding are investigated.
Beside this, the hydrogen flow as well as the kinetics of the chemical reaction are analyzed. Based on such extensive simulations of different design concepts, the most promising overall storage systems are developed and systematically optimized. Finally, the total hydrogen content of the overall storage system is calculated and compared between different design concepts. Based on this, conclusions are drawn about robust criteria how to construct a cooling and heating device for this new storage material.
enriched with highly porous carbon. As metal hydride, a RHC (reactive hydride composite) was chosen (e.g., MgH2 + 2 LiBH4).
The hydride is infiltrated into the pores of the porous carbon suppressing the long-range phase separation of the two different
hydrides by nano-confinement. The aim is to maintain fast kinetics and achieve cycle stability of the RHC (reactive hydride
composite). The combination of RHC and porous carbon is then integrated into a polymer film to allow an easy and safe handling
of the material. To produce a storage system out of such a film, the thin material is rolled in the same style like a rolled membrane module; i.e., it is rolled together with a thin spacer (e.g., steel mesh) allowing an easy hydrogen access to all parts of the membrane. The last step is the implementation of the rolled storage module into the tank shell. To analyze different design concepts and the behavior of this newly developed composite storage material, extensive FEM-simulations have been realized for different cooling structures. The latter is necessary to fulfil the thermodynamic requirements and to maximize the speed of hydrogen storage. Therefore, the temperature development within the storage during hydrogen feeding are investigated.
Beside this, the hydrogen flow as well as the kinetics of the chemical reaction are analyzed. Based on such extensive simulations of different design concepts, the most promising overall storage systems are developed and systematically optimized. Finally, the total hydrogen content of the overall storage system is calculated and compared between different design concepts. Based on this, conclusions are drawn about robust criteria how to construct a cooling and heating device for this new storage material.
Schlagworte
cooling concept
hydrogen storage
metal hydride storage
temperature development
DDC Class
600: Technik
620: Ingenieurwissenschaften
Publication version
publishedVersion
Loading...
Name
125923317.pdf
Size
3.4 MB
Format
Adobe PDF