TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Structure and constructions of 3-connected graphs
 
Options

Structure and constructions of 3-connected graphs

Publikationstyp
Doctoral Thesis
Date Issued
2011
Sprache
English
Author(s)
Schmidt, Jens M.  orcid-logo
Title Granting Institution
FU Berlin
Place of Title Granting Institution
Berlin
Examination Date
2011
TORE-URI
http://hdl.handle.net/11420/7597
Citation
Dissertation, Freie Universität Berlin, Mathematik und Informatik (2011)
Publisher Link
http://www.diss.fu-berlin.de/diss/receive/FUDISS_thesis_000000022941
The class of 3-connected (i.e. 3-vertex-connected) graphs has been studied intensively for many reasons in the past 50 years. One algorithmic reason is that graph problems can often be reduced to handle only 3-connected graphs; applications include problems in graph drawing, problems related to planarity and online problems on planar graphs. It is possible to test a graph on being 3-connected in linear time. However, the linear-time algorithms known are complicated and difficult to implement. For that reason, it is essential to check implementations of these algorithms to be correct. A way to check the correctness of an algorithm for every instance is to make it certifying, i. e., to enhance its output by an easy-to-verify certificate of correctness for that output. However, surprisingly few work has been devoted to find certifying algorithms that test 3-connectivity; in fact, the currently fastest algorithms need quadratic time.

Two classic results in graph theory due to Barnette, Gr\"unbaum and Tutte show that 3-connected graphs can be characterized by the existence of certain inductively defined constructions. We give new variants of these constructions, relate these to already existing ones and show how they can be exploited algorithmically. Our main result is a linear-time certifying algorithm for testing 3-connectivity, which
is based on these constructions. This yields also simple certifying algorithms in linear time for 2-connectivity, 2-edge-connectivity and 3-edge-connectivity. We conclude this thesis by a structural result that shows that one of the constructions is preserved when being applied to depth-first trees of the graph only.
Subjects
Dissertation, FU Berlin
DDC Class
510: Mathematik
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback