TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Improvement of a convergence condition for the Durand-Kerner iteration
 
Options

Improvement of a convergence condition for the Durand-Kerner iteration

Publikationstyp
Journal Article
Date Issued
1998-09-15
Sprache
English
Author(s)
Batra, Prashant  orcid-logo
Institut
Arbeitsbereich Programmiersprachen und Algorithmen 4-04(H)  
TORE-URI
http://hdl.handle.net/11420/8888
Journal
Journal of computational and applied mathematics  
Volume
96
Issue
2
Start Page
117
End Page
125
Citation
Journal of Computational and Applied Mathematics 96 (2): 117-125 (1998)
Publisher DOI
10.1016/S0377-0427(98)00109-5
Scopus ID
2-s2.0-0032163498
Publisher
Elsevier
The Durand-Kerner iteration is a well-known simultaneous method for approximation of (simple) zeros of a polynomial. By relating Weierstrass' correction and the minimal distance between approximations practical conditions for convergence have been obtained. These conditions also ensure the existence of isolating discs for the polynomial roots, i.e. each iteration step gives a refined set of inclusion discs. In this paper refined conditions of convergence are given.
Subjects
Convergence theorems
Inclusion methods
Initial conditions for convergence
Polynomial roots
Simultaneous method
DDC Class
004: Informatik
510: Mathematik
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback