TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Synthesis and Aggregation Behavior of a Glycolated Naphthalene Diimide Bithiophene Copolymer for Application in Low-Level n-Doped Organic Thermoelectrics
 
Options

Synthesis and Aggregation Behavior of a Glycolated Naphthalene Diimide Bithiophene Copolymer for Application in Low-Level n-Doped Organic Thermoelectrics

Publikationstyp
Journal Article
Date Issued
2020-07-14
Sprache
English
Author(s)
Shin, Young Hun  
Komber, Hartmut  
Caiola, Davide  
Cassinelli, Marco  
Sun, Hengda  
Stegerer, Dominik  
Schreiter, Marcel  
Horatz, Kilian  
Lissel, Franziska  
Jiao, Xuechen  
McNeill, Christopher R.  
Cimò, Simone  
Bertarelli, Chiara  
Fabiano, Simone  
Caironi, Mario  
Sommer, Michael  
TORE-URI
http://hdl.handle.net/11420/15147
Journal
Macromolecules  
Volume
53
Issue
13
Start Page
5158
End Page
5168
Citation
Macromolecules 53 (13): 5158-5168 (2020-07-14)
Publisher DOI
10.1021/acs.macromol.0c00657
Scopus ID
2-s2.0-85087698326
The synthesis of a naphthalene diimide bithiophene copolymer P(EO-NDIT2) with branched, base-stable, and purely ether-based side chains is presented. Stille polycondensation leads to high molecular weights that are limited by methyl transfer and eventually T2 homocouplings. While extensive solution aggregation hampers molecular weight determination by conventional methods, NMR spectroscopy allows identification of both T2- (H and methyl) and NDI-related (methyl) end groups, enabling the determination of absolute number average molecular weights larger than Mn,NMR ∼100 kg/mol. Solvent- and temperature-dependent aggregation in solution is investigated by NMR and UV-vis spectroscopy. These results are used for solution doping of P(EO-NDIT2) with N-benzimidazole-based n-dopants. Spin coating from heated chlorobenzene solutions and using 4-(2,3-dihydro-1,3-dimethyl-1H-benzoimidazol-2-yl)-N,N-diisopropylaniline (N-DiPrBI) as the dopant leads to homogeneous films with highest conductivities up to 10-2 S/cm. Generally, N-DiPrBI concentrations as low as ∼5 wt % are sufficient to increase conductivity by orders of magnitude. Strikingly, maximum power factors up to 0.11 μW/mK2, although limited by conductivity, are achieved for the highest molar mass sample at a low dopant concentration of 2 wt % N-DiPrBI only.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback