TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Impact of insulator shape, flow rate and electrical parameters on inactivation of E. coli using a continuous co-linear PEF system
 
Options

Impact of insulator shape, flow rate and electrical parameters on inactivation of E. coli using a continuous co-linear PEF system

Publikationstyp
Journal Article
Date Issued
2011
Sprache
English
Author(s)
Meneses, Nicolas
Jaeger, Henry
Moritz, Jeldrik  
Wasserressourcen und Wasserversorgung B-11  
Knorr, Dietrich
TORE-URI
https://hdl.handle.net/11420/46727
Journal
Innovative food science & emerging technologies  
Volume
12
Issue
1
Start Page
6
End Page
12
Citation
Innovative Food Science and Emerging Technologies
Publisher DOI
10.1016/j.ifset.2010.11.007
Scopus ID
2-s2.0-79951675682
Publisher
Elsevier Science
Pulsed electric field (PEF) application for the treatment of liquid media was investigated with focus on the improvement of the microbial inactivation. The paper aims to illustrate the various interdependencies of different treatment parameters such as electric field strength distribution, flow velocity profile, pulse energy, pulse frequency and electrical conductivity. Escherichia coli was used as an indicator microorganism to exemplify the impact of the previously mentioned parameters on the microbial inactivation results. The experimental set up was assisted by the numerical simulations of the electric field strength and flow velocity distribution. Two different configurations of insulator have been investigated related to the electric field strength and velocity distribution and their impact in the inactivation of E. coli. The convex insulator geometry was found to increase the average electric field strength from 37.6 to 38.5 kV/cm, but resulted in lower field homogeneity. Its use was therefore found to be favourable for the treatment media with lower conductivity. In that case, the application of a higher pulse number at maintained total specific energy input compensated field inhomogeneity effects by a longer treatment time. Industrial relevance: PEF as a non-thermal pasteurization technology requires an accurately defined treatment intensity in terms of electric field strength and treatment time. The microbial inactivation depends on the various interdependencies of different treatment parameters such as electric field strength distribution, flow velocity profile, pulse energy, pulse frequency and electrical conductivity. The presented investigation contributes to the understanding of these parameters for further successful industrial implementation of the PEF technology, such as, the proper selection of insulator shape, electric field strength and estimation of treatment time.
Subjects
Microbial inactivation
Pulsed electric field
Treatment chamber design
DDC Class
570: Life Sciences, Biology
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback