TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Cross-domain fusion in smart seafloor sensor networks
 
Options

Cross-domain fusion in smart seafloor sensor networks

Publikationstyp
Journal Article
Date Issued
2022-10-12
Sprache
English
Author(s)
Zainab, Tayyaba  
Kiel University  
Karstens, Jens  
Landsiedel, Olaf  
TORE-URI
https://hdl.handle.net/11420/53865
Journal
Informatik-Spektrum  
Volume
45
Issue
5
Start Page
290
End Page
294
Citation
Informatik-Spektrum 45 (5): 290-294 (2022)
Publisher DOI
10.1007/s00287-022-01486-9
Scopus ID
2-s2.0-85140745248
Publisher
Springer
Many of the socio-economic and environmental challenges of the 21st century like the growing energy and food demand, rising sea levels and temperatures put stress on marine ecosystems and coastal populations. This requires a significant strengthening of our monitoring capacities for processes in the water column, at the seafloor and in the subsurface. However, present-day seafloor instruments and the required infrastructure to operate these are expensive and inaccessible. We envision a future Internet of Underwater Things, composed of small and cheap but intelligent underwater nodes. Each node will be equipped with sensing, communication, and computing capabilities. Building on distributed event detection and cross-domain data fusion, such an Internet of Underwater Things will enable new applications. In this paper, we argue that to make this vision a reality, we need new methodologies for resource-efficient and distributed cross-domain data fusion. Resource-efficient, distributed neural networks will serve as data-analytics pipelines to derive highly aggregated patterns of interest from raw data. These will serve as (1) a common base in time and space for fusion of heterogeneous data, and (2) be sufficiently small to be transmitted efficiently in resource-constrained settings.
Subjects
MLE@TUHH
DDC Class
600: Technology
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback