TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Analytical and numerical approaches to the analysis of progress curves: a methodological comparison
 
Options

Analytical and numerical approaches to the analysis of progress curves: a methodological comparison

Citation Link: https://doi.org/10.15480/882.14600
Publikationstyp
Journal Article
Date Issued
2025-02-01
Sprache
English
Author(s)
Waluga, Thomas  
Systemverfahrenstechnik V-4  
von Ziegner, Francesca  
Systemverfahrenstechnik V-4  
Skiborowski, Mirko  orcid-logo
Systemverfahrenstechnik V-4  
TORE-DOI
10.15480/882.14600
TORE-URI
https://hdl.handle.net/11420/54223
Journal
Process biochemistry  
Volume
151
Start Page
1
End Page
13
Citation
Process Biochemistry 151: 1-13 (2025)
Publisher DOI
10.1016/j.procbio.2025.01.029
Scopus ID
2-s2.0-85216632213
Publisher
Elsevier
Accurate models of the reaction kinetics of enzymatic reactions are essential for the design of biocatalytic processes. While many experimental studies still build on initial slope analysis, progress curve analysis offers the potential for modelling enzymatic reactions with a significantly lower experimental effort in terms of time and costs, but requires the solution of a dynamic nonlinear optimization problem. There are many different approaches for solving this problem for parameter regression, building on the experimental progress curve data. In order to provide some guidance for selecting an appropriate approach, this study presents a detailed comparison of two analytical and two numerical approaches analysing their strengths and weaknesses on the basis of three case studies. The analytical approaches build on the implicit and explicit integrals of the respective reaction rate equations, while the numerical approaches consider the direct numerical integration of the differential mass balance equations as well as the transformation of the dynamic problem to an algebraic problem by means of spline interpolation of the reaction data. In particular, the dependence of the results on the initial parameter estimates is evaluated, showcasing that the numerical solution with spline interpolation shows a lower dependence on the initial values providing parameter estimates comparable to the analytical approaches, which are however limited in applicability.
Subjects
Enzyme reaction kinetics | Modelling | Progress curve analysis
DDC Class
572: Biochemistry
518: Numerical Analysis
Funding(s)
Projekt DEAL  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

1-s2.0-S1359511325000376-main.pdf

Type

Main Article

Size

2.82 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback