TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Inland waterway efficiency through skipper collaboration and joint speed optimization
 
Options

Inland waterway efficiency through skipper collaboration and joint speed optimization

Publikationstyp
Journal Article
Date Issued
2021-07-01
Sprache
English
Author(s)
Defryn, Christof  
Golak, Julian Arthur Pawel 
Grigoriev, Alexander  
Timmermans, Veerle  
TORE-URI
http://hdl.handle.net/11420/10334
Journal
European journal of operational research  
Volume
292
Issue
1
Start Page
276
End Page
285
Citation
European Journal of Operational Research 292 (1): 276-285 (2021-07-01)
Publisher DOI
10.1016/j.ejor.2020.10.017
Scopus ID
2-s2.0-85096175419
We address the problem of minimizing the aggregated fuel consumption by the vessels in an inland waterway, e.g., a river, with a single lock. The fuel consumption of a vessel depends on its velocity and the slower it moves, the less fuel it consumes. Given entry times of the vessels into the waterway and the deadlines before which they need to leave the waterway, we start from the optimal velocities of the vessels that minimize their private fuel consumption, where we assume selfish behavior of the skippers. Presence of the lock and possible congestion on the waterway make the problem computationally challenging. First, we prove that in general, a Nash equilibrium might not exist, i.e., if there is no supervision on the vessels’ velocities, there might not exist a strategy profile from which no vessel can unilaterally deviate to decrease its private fuel consumption. Next, we introduce simple supervision methods to guarantee the existence of a Nash equilibrium. Unfortunately, though a Nash equilibrium can be computed, the aggregated fuel consumption of such a stable solution can be high compared to the social optimum, where the total fuel consumption is minimized. Therefore, we propose a mechanism involving payments between vessels, guaranteeing a Nash equilibrium while minimizing the fuel consumption. This mechanism is studied for both the offline setting, where all information is known beforehand, and online setting, where we only know the entry time and deadline of a vessel when it enters the waterway.
Subjects
Congestion
Mechanism design
Online scheduling
Scheduling
Social welfare
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback