TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Efficient compression of far field matrices in multipole algorithms based on spherical harmonics and radiating modes
 
Options

Efficient compression of far field matrices in multipole algorithms based on spherical harmonics and radiating modes

Publikationstyp
Journal Article
Date Issued
2012-09-02
Sprache
English
Author(s)
Schröder, Arne  
Brüns, Heinz-Dietrich  
Schuster, Christian  
Institut
Theoretische Elektrotechnik E-18  
TORE-URI
http://hdl.handle.net/11420/4298
Journal
Advanced electromagnetics  
Volume
1
Issue
2
Start Page
5
End Page
11
Citation
Advanced Electromagnetics 2 (1): 5-11 (2012)
Publisher DOI
10.7716/aem.v1i2.24
Scopus ID
2-s2.0-84957630337
Publisher
LGEP-SUPELEC
This paper proposes a compression of far field matrices in the fast multipole method and its multilevel extension for electromagnetic problems. The compression is based on a spherical harmonic representation of radiation patterns in conjunction with a radiating mode expression of the surface current. The method is applied to study near field effects and the far field of an antenna placed on a ship surface. Furthermore, the electromagnetic scattering of an electrically large plate is investigated. It is demonstrated, that the proposed technique leads to a significant memory saving, making multipole algorithms even more efficient without compromising the accuracy.
Subjects
Compression techniques
Fast multipole algorithms
Scattering EMC
DDC Class
620: Ingenieurwissenschaften
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback