TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Model-based lower limb segmentation using weighted multiple candidates
 
Options

Model-based lower limb segmentation using weighted multiple candidates

Publikationstyp
Conference Paper
Date Issued
2010-12-01
Sprache
English
Author(s)
Gooßen, André  
Hermann, Eugen  
Gernoth, Thorsten  
Pralow, Thomas  
Grigat, Rolf-Rainer  
Institut
Bildverarbeitungssysteme E-2  
TORE-URI
http://hdl.handle.net/11420/10031
First published in
CEUR workshop proceedings  
Number in series
574
Start Page
276
End Page
280
Citation
CEUR Workshop Proceedings 574: 276-280 (2010-12-01)
Contribution to Conference
Workshop Bildverarbeitung für die Medizin, BVM 2010  
Scopus ID
2-s2.0-84893763334
Publisher
Springer
In this paper we propose an extension of active shape model based bone segmentation. We examine the benefit of using multiple candidates for new landmark positions during segmentation. To incorporate this information we compare three strategies of adapting the fitting algorithm. For evaluation we segmented the hip, knee and ankle joints in more than 100 digital radiographs of the lower limbs. We achieve superior accuracy compared to the classic algorithm and prove that segmentation results benefit from multiple candidates.
DDC Class
600: Technik
610: Medizin
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback