TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Prediction of surface profile in CFRP machining through phenomenological analysis and inverse continuous wavelet transformation
 
Options

Prediction of surface profile in CFRP machining through phenomenological analysis and inverse continuous wavelet transformation

Citation Link: https://doi.org/10.15480/882.13120
Publikationstyp
Conference Paper
Date Issued
2024-06
Sprache
English
Author(s)
Brouschkin, Alexander  
Produktionsmanagement und -technik M-18  
Köttner, Lars  
Produktionsmanagement und -technik M-18  
Hintze, Wolfgang  
Produktionsmanagement und -technik M-18  
Dege, Jan Hendrik  orcid-logo
Produktionsmanagement und -technik M-18  
TORE-DOI
10.15480/882.13120
TORE-URI
https://hdl.handle.net/11420/48190
Journal
Procedia CIRP  
Volume
123
Start Page
143
End Page
148
Article Number
Elsevier
Citation
7th CIRP Conference on Surface Integrity, CSI 2024
Contribution to Conference
7th CIRP Conference on Surface Integrity, CSI 2024  
Publisher DOI
10.1016/j.procir.2024.05.027
Scopus ID
2-s2.0-85196851954
Carbon fibre-reinforced polymer (CFRP) is favored for its high strength to weight ratio, outstanding direction dependent mechanical properties and the high potential for load adapted design. However, machining unidirectional CFRP is challenging due to its anisotropic behavior, resulting in variable surface quality under identical machining parameters with different fibre orientations. Recently, a universal, process-independent model describing the engagement conditions in oblique cutting of unidirectional CFRPs has been developed, introducing the spatial fibre cutting angle θ0 and the spatial engagement angle ϕ0. Milling and drilling are mostly used for machining CFRP. Since the engagement conditions are rather complex, first analogy experiments are conducted in turning with variation of the setting and inclination angles. In this study, continuous surface profiles were recorded as a function of the spatial fibre cutting angle. Phenomenological and continuous wavelet analyses can be used to describe the surface profiles as a function of the spatial engagement conditions and to accurately predict them and the surface roughness using an inverse wavelet transformation. Experimental investigations with a side milling process of CFRP validate the prediction approach and show a good agreement between the experimental and predicted surface profiles.
Subjects
carbon fibre reinforced plastics
carbon fibre reinforced polymers, cutting
sawing
spatial engagement conditions
surface roughness
turning
DDC Class
620.1: Engineering Mechanics and Materials Science
Funding(s)
Verfahrensunabhängiges Kraft- und Oberflächenmodell für das Zerspanen von Faserverstärkten Kunststoffen im schrägen Schnitt  
Lizenz
https://creativecommons.org/licenses/by-nc-nd/4.0/
Loading...
Thumbnail Image
Name

1-s2.0-S2212827124002312-main.pdf

Type

Main Article

Size

2.04 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback