TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Deformation dynamics of nanopores upon water imbibition
 
Options

Deformation dynamics of nanopores upon water imbibition

Citation Link: https://doi.org/10.15480/882.13324
Publikationstyp
Journal Article
Date Issued
2024-09-17
Sprache
English
Author(s)
Sanchez Calzado, Juan  
Material- und Röntgenphysik M-2  
Dammann, Lars  orcid-logo
Molekulardynamische Simulation weicher Materie M-EXK2  
Gallardo Domínguez, Laura  
Material- und Röntgenphysik M-2  
Li, Zhuoqing 
Material- und Röntgenphysik M-2  
Fröba, Michael  
Meißner, Robert  orcid-logo
Molekulardynamische Simulation weicher Materie M-EXK2  
Stone, Howard A.  
Huber, Patrick  orcid-logo
Material- und Röntgenphysik M-2  
TORE-DOI
10.15480/882.13324
TORE-URI
https://hdl.handle.net/11420/44999
Journal
Proceedings of the National Academy of Sciences of the United States of America  
Volume
121
Issue
38
Article Number
e2318386121
Citation
Proceedings of the National Academy of Sciences of the United States of America 121 (38): e2318386121 (2024)
Publisher DOI
10.1073/pnas.2318386121
Scopus ID
2-s2.0-85204167495
ArXiv ID
2311.13025v1
Publisher
National Acad. of Sciences
Is Supplemented By
10.15480/882.13233
Capillarity-driven transport in nanoporous solids is ubiquitous in nature and
is of increasing importance for the functionality of modern liquid-infused
engineering materials. During imbibition, highly curved menisci are driven by
negative Laplace pressures of several hundred atmospheres, exerting an enormous
contractile load on an increasing portion of the porous matrix. Due to the
challenge of simultaneously monitoring imbibition and deformation with high
spatial resolution, the resulting coupling of solid elasticity to liquid
capillarity has remained largely unexplored. Here, we study water imbibition in
mesoporous silica using optical imaging, gravimetry, and high-resolution
dilatometry. In contrast to an expected Laplace pressure-induced contraction,
we find a square-root-of-time expansion and an additional abrupt length
increase when the menisci reach the top surface. The final expansion is absent
when we stop the imbibition front inside the porous medium in a dynamic
imbibition-evaporation equilibrium, as is typical for water transport and
transpiration in plants. These peculiar deformation behaviors are validated by
single-nanopore molecular dynamics simulations and described by a continuum
model that highlights the importance of expansive surface stresses at the pore
walls (Bangham effect) and the buildup or release of contractile Laplace
pressures as nanoscale menisci collectively advance, arrest, or disappear. Our
model predicts that these observations are valid not only for water imbibition
in silica, but for any imbibition process in nanopores, regardless of the
liquid/solid combination. This also suggests that simple deformation
measurements can be used to quantify surface stresses and Laplace pressures or
transport in a wide variety of natural and artificial porous media.
Subjects
Soft Condensed Matter
Mesoscale and Nanoscale Physics
Materials Science
Applied Physics
Fluid Dynamics
DDC Class
530: Physics
620: Engineering
Funding(s)
Dynamische Elektrobenetzung an Nanoporösen Oberflächen: Schaltbare Tropfenspreitung, Imbition und Elastokapillarität  
Graduiertenkolleg 2462: Prozesse in natürlichen und technischen Partikel-Fluid-Systemen  
SFB 986: Tailor-Made Multi-Scale Materials Systems - M3  
DASHH Helmholtz Graduiertenkolleg  
EXC 2176: Schriftartefakte verstehen: Material, Interaktion und Transmission in Manuskriptkulturen  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

sanchez-et-al-2024-deformation-dynamics-of-nanopores-upon-water-imbibition.pdf

Type

Main Article

Size

13.8 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback