TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. 3D reconstruction of FIB tomography data using machine learning
 
Options

3D reconstruction of FIB tomography data using machine learning

Citation Link: https://doi.org/10.15480/882.13216
Publikationstyp
Doctoral Thesis
Date Issued
2024
Sprache
English
Author(s)
Sardhara, Trushal 
Kontinuums- und Werkstoffmechanik M-15  
Advisor
Cyron, Christian J.  
Referee
Schaan, Gunnar  
Title Granting Institution
Technische Universität Hamburg
Place of Title Granting Institution
Hamburg
Examination Date
2024-08-06
Institute
Kontinuums- und Werkstoffmechanik M-15  
TORE-DOI
10.15480/882.13216
TORE-URI
https://hdl.handle.net/11420/48745
Citation
Technische Universität Hamburg (2024)
This thesis introduces methods for accurate 3D reconstruction of FIB tomography data using machine learning. It addresses challenges in obtaining large datasets and ground truth values, proposing a method for virtual FIB tomography data generation and an isotropy-based validation method. ML-based segmentation methods tackle issues in BSE images, like the shine-through effect and image intensity ambiguities. Integrating the slice repositioning method with image inpainting resolves inconsistencies in slice thicknesses in FIB tomography data. Additionally, a multimodal machine learning approach using multivoltage images further enhances 3D reconstruction accuracy.
Subjects
Machine Learning
3D Reconstruction
FIB tomography
Synthetic Data
Domain Adaptation
Generative ML
DDC Class
006.3: Artificial Intelligence
621.3: Electrical Engineering, Electronic Engineering
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

Sardhara_Trushal_3DReconstruction_ML_2024.pdf

Size

24.03 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback