TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Power-efficient control of non-linear magnetic field generators for MPI
 
Options

Power-efficient control of non-linear magnetic field generators for MPI

Citation Link: https://doi.org/10.15480/882.15068
Publikationstyp
Journal Article
Date Issued
2025-03-14
Sprache
English
Author(s)
Suskin, Philip  
Förger, Fynn  orcid-logo
Biomedizinische Bildgebung E-5  
Jürß, Paul  
Biomedizinische Bildgebung E-5  
Boberg, Marija  orcid-logo
Biomedizinische Bildgebung E-5  
Knopp, Tobias  
Biomedizinische Bildgebung E-5  
Möddel, Martin  orcid-logo
Biomedizinische Bildgebung E-5  
TORE-DOI
10.15480/882.15068
TORE-URI
https://hdl.handle.net/11420/55324
Journal
International journal on magnetic particle imaging  
Volume
11
Issue
1, Suppl 1
Article Number
2503023
Citation
International Journal on Magnetic Particle Imaging 11 (1, Suppl 1): 2503023 (2025)
Publisher DOI
10.18416/IJMPI.2025.2503023
Scopus ID
2-s2.0-105000498124
Publisher
Infinite Science Publishing
The scaling of electrical power constitutes a significant challenge when adapting Magnetic Particle Imaging (MPI) to a human scale. The use of coils incorporating soft-iron cores serves to reduce power usage, but also introduces spatial imperfections and non-linearities in the current-to-field relationship. This study proposes methodologies for the control of the magnetic field output of a system comprising 18 coils, subject to the influence of saturated iron. In particular, we integrate current sequence optimization with neural network-based predictions for field and gradient values, thereby enabling the precise and power-optimal generation of magnetic fields. The proposed framework for controlling non-linear magnetic field generators represents a significant advancement in MPI technology, paving the way for the development of human-scale, power-efficient medical imaging solutions.
DDC Class
621.3: Electrical Engineering, Electronic Engineering
004: Computer Sciences
530: Physics
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

903.pdf

Type

Logo

Size

770.35 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback