TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Structured perturbations and symmetric matrices
 
Options

Structured perturbations and symmetric matrices

Publikationstyp
Journal Article
Date Issued
2000-06-20
Sprache
English
Author(s)
Rump, Siegfried M.  orcid-logo
Institut
Zuverlässiges Rechnen E-19  
TORE-URI
http://hdl.handle.net/11420/9440
Journal
Linear algebra and its applications  
Volume
278
Issue
1-3
Start Page
121
End Page
132
Citation
Linear Algebra and Its Applications 278 (1-3): 121-132 (1998)
Publisher DOI
10.1016/S0024-3795(97)10078-7
Scopus ID
2-s2.0-11544276391
Publisher
American Elsevier Publ.
For a given n × n matrix the ratio between the componentwise distance to the nearest singular matrix and the inverse of the optimal Bauer-Skeel condition number cannot be larger than (3 + 2√2)n. In this note a symmetric matrix is presented where the described ratio is equal to n for the choice of most interest in numerical computation, for relative perturbations of the individual matrix components. It is shown that a symmetric linear system can be arbitrarily ill-conditioned, while any symmetric and entrywise relative perturbation of the matrix of less than 100% does not produce a singular matrix. That means that the inverse of the condition number and the distance to the nearest ill-posed problem can be arbitrarily far apart. Finally we prove that restricting structured perturbations to symmetric (entrywise) perturbations cannot change the condition number by more than a factor (3 + 2\√2)n.
Subjects
Condition number
Structured perturbations
Symmetric matrices
DDC Class
510: Mathematik
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback