TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Challenges of order reduction techniques for problems involving polymorphic uncertainty
 
Options

Challenges of order reduction techniques for problems involving polymorphic uncertainty

Publikationstyp
Journal Article
Date Issued
2019-05
Sprache
English
Author(s)
Pivovarov, Dmytro  
Willner, Kai  
Steinmann, Paul  
Brumme, Stephan  
Müller, Michael  
Srisupattarawanit, Tarin  
Ostermeyer, Georg Peter  
Henning, Carla  
Ricken, Tim  
Kastian, Steffen  
Reese, Stefanie  
Moser, Dieter  
Grasedyck, Lars  
Biehler, Jonas  
Pfaller, Martin  
Wall, Wolfgang  
Kohlsche, Thomas  
Estorff, Otto von  
Gruhlke, Robert  
Eigel, Martin  
Ehre, Max  
Papaioannou, Iason  
Straub, Daniel  
Leyendecker, Sigrid  
Institut
Modellierung und Berechnung M-16  
TORE-URI
http://hdl.handle.net/11420/2963
Journal
GAMM-Mitteilungen  
Volume
42
Issue
2
Start Page
e201900011
Citation
GAMM Mitteilungen 2 (42): e201900011- (2019-05)
Publisher DOI
10.1002/gamm.201900011
Scopus ID
2-s2.0-85064502054
Modeling of mechanical systems with uncertainties is extremely challenging and requires a careful analysis of a huge amount of data. Both, probabilistic modeling and nonprobabilistic modeling require either an extremely large ensemble of samples or the introduction of additional dimensions to the problem, thus, resulting also in an enormous computational cost growth. No matter whether the Monte-Carlo sampling or Smolyak's sparse grids are used, which may theoretically overcome the curse of dimensionality, the system evaluation must be performed at least hundreds of times. This becomes possible only by using reduced order modeling and surrogate modeling. Moreover, special approximation techniques are needed to analyze the input data and to produce a parametric model of the system's uncertainties. In this paper, we describe the main challenges of approximation of uncertain data, order reduction, and surrogate modeling specifically for problems involving polymorphic uncertainty. Thereby some examples are presented to illustrate the challenges and solution methods.
Funding(s)
SPP 1886 - Polymorphe Unschärfemodellierungen für den numerischen Entwurf von Strukturen: "Modellierung von vibro-akustischen Systemen mit polymorphen Unschärfen am Beispiel der Schallabstrahlung von Reifen"  
More Funding Information
This research was supported by the Deutsche Forschungs-Gemeinschaft (DFG); WI 1181/9-1; STE 544/59-1; OS 166/16-1; RI 1202/6-1; RE 1057/40-1; GR 3179/5-1; WA 1521/23-1; KO 4900/5-1; ES 70/8-1; EI 1050/1-1; STR 1140/6-1; LE 1841/4-1The support of this work by the Deutsche Forschungs-Gemeinschaft (DFG) through the Priority Programme SPP 1886 Polymorphic uncertainty modelling for the numerical design of structures under grants WI 1181/9-1, STE 544/59-1, OS 166/16-1, RI 1202/6-1, RE 1057/40-1, GR 3179/5-1, WA 1521/23-1, KO 4900/5-1, ES 70/8-1, EI 1050/1-1, STR 1140/6-1, and LE 1841/4-1 is gratefully acknowledged.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback