TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Functionalisation of metal-polymer-nanocomposites : chemoelectromechanical coupling and charge carrier transport
 
Options

Functionalisation of metal-polymer-nanocomposites : chemoelectromechanical coupling and charge carrier transport

Citation Link: https://doi.org/10.15480/882.1728
Publikationstyp
Journal Article
Date Issued
2018-03-27
Sprache
English
Author(s)
Wilmers, Jana  
Bargmann, Swantje  
TORE-DOI
10.15480/882.1728
TORE-URI
http://tubdok.tub.tuhh.de/handle/11420/1731
Journal
Extreme mechanics letters  
Volume
21
Start Page
57
End Page
64
Citation
Extreme Mechanics Letters (21) : 57-64 (2018)
Publisher DOI
10.1016/j.eml.2018.03.002
Publisher
Elsevier
Electrochemical actuation in nanoporous metals is achieved by impregnation of the material’s pore space with a ionic conductor, typically an aqueous electrolyte. These hybrid actuators exhibit fully reversible deformation and mechanical properties that can be controlled by electric signals. Recently, set-ups have been proposed in which the nanoporous metal’s surface is additionally coated with a conjugated polymer, resulting in a nanocomposite that exhibits strongly increased actuation strains compared to the pure metal while still retaining the mechanical strength of the metal backbone.

In order to exploit the full potential of these nanocomposite actuators, a detailed understanding of the underlying ion transport mechanisms and means to predict the actuator’s response are necessary. We present an interface-extended continuum mechanical model to study actuation in pure nanoporous gold and nanoporous gold–polypyrrole nanocomposites. Simulations predict significantly enhanced actuation strains due to the presence of the polymer phase and show that both, the nanocomposite’s structure and the ions’ mobilities, greatly affect the actuator’s response.
Subjects
multiphysics
actuators
interface effects
nanocomposites
charge carrier transport
electromechanical coupling
DDC Class
530: Physik
620: Ingenieurwissenschaften
Funding(s)
SFB 986: Teilprojekt B6 - Modellierung und Simulation der Interphaseneigenschaften von Kompositwerkstoffen aus Metall und Polymer auf der Nanoskala  
More Funding Information
German Research Foundation (DFG)
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by-nc-nd/4.0/
Loading...
Thumbnail Image
Name

1-s2.0-S2352431617301499-main.pdf

Size

820.46 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback