TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. 4D spatio-temporal convolutional networks for object position estimation in OCT volumes
 
Options

4D spatio-temporal convolutional networks for object position estimation in OCT volumes

Citation Link: https://doi.org/10.15480/882.3036
Publikationstyp
Journal Article
Date Issued
2020-09-17
Sprache
English
Author(s)
Bengs, Marcel  
Gessert, Nils Thorben  
Schlaefer, Alexander  
Institut
Medizintechnische Systeme E-1  
TORE-DOI
10.15480/882.3036
TORE-URI
http://hdl.handle.net/11420/7722
Journal
Current directions in biomedical engineering  
Volume
6
Issue
1
Article Number
20200001
Citation
Current Directions in Biomedical Engineering 1 (6): 20200001 (2020)
Publisher DOI
10.1515/cdbme-2020-0001
Scopus ID
2-s2.0-85093500434
Publisher
De Gruyter
Tracking and localizing objects is a central problem in computer-assisted surgery. Optical coherence tomography (OCT) can be employed as an optical tracking system, due to its high spatial and temporal resolution. Recently, 3D convolutional neural networks (CNNs) have shown promising performance for pose estimation of a marker object using single volumetric OCT images. While this approach relied on spatial information only, OCT allows for a temporal stream of OCT image volumes capturing the motion of an object at high volumes rates. In this work, we systematically extend 3D CNNs to 4D spatio-temporal CNNs to evaluate the impact of additional temporal information for marker object tracking. Across various architectures, our results demonstrate that using a stream of OCT volumes and employing 4D spatio-temporal convolutions leads to a 30% lower mean absolute error compared to single volume processing with 3D CNNs.
Subjects
convolutional neural networks
optical coherence tomography
position estimation
spatio-temporal data
DDC Class
004: Informatik
600: Technik
610: Medizin
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

[23645504 - Current Directions in Biomedical Engineering] 4D spatio-temporal convolutional networks for object position estimation in OCT volumes.pdf

Size

486.46 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback