TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Evaporation from layered porous media
 
Options

Evaporation from layered porous media

Publikationstyp
Journal Article
Date Issued
2010-06
Author(s)
Shokri, Nima  
Lehmann, Peter  
Or, Dani  
TORE-URI
http://hdl.handle.net/11420/10697
Journal
Journal of geophysical research  
Volume
115
Issue
6
Article Number
B06204
Citation
Journal of Geophysical Research: Solid Earth 115 (6): B06204 (2010-06)
Publisher DOI
10.1029/2009JB006743
Scopus ID
2-s2.0-77954369169
Evaporation rates from porous media may vary considerably due to changes in internal transport mechanisms and potential interruption of hydraulic continuity; both are influenced by media pore space properties. Evaporation behavior in layered porous media is affected by thickness and sequence of layering and capillary characteristics of each layer. We propose a composite characteristic length for predicting drying front depth at the end of a period with a high and constant drying rate (stage 1 evaporation) from layered porous media. The model was tested in laboratory experiments using Hele-Shaw cells filled with alternating layers of coarse and fine sands considering different combinations of thicknesses and positions. The presence of textural interfaces affects drying rate, modifies liquid phase configuration, and affects the dynamics of the receding drying front. Neutron radiography measurements were used to delineate dynamics of liquid phase distribution with high temporal and spatial resolution. Results show that air invading an interface between fine and coarse sand layers results in a capillary pressure jump and subsequent relaxation that significantly modify liquid phase distribution compared with evaporation from homogeneous porous media. Insights are potentially useful for designing mulching strategies and capillary barriers aimed at reducing evaporative losses.
DDC Class
600: Technology
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback