TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Decision making in structural health monitoring using large language models
 
Options

Decision making in structural health monitoring using large language models

Publikationstyp
Conference Paper
Date Issued
2025-09
Sprache
English
Author(s)
Smarsly, Kay  
Digitales und autonomes Bauen B-1  
Chmelnizkij, Alexander  
Digitales und autonomes Bauen B-1  
Dragos, Kosmas  
Digitales und autonomes Bauen B-1  
Peralta Abadia, Jose  
Digitales und autonomes Bauen B-1  
Al-Zuriqat, Thamer 
Digitales und autonomes Bauen B-1  
Ahmad, Muhammad  
Digitales und autonomes Bauen B-1  
Chillón Geck, Carlos 
Digitales und autonomes Bauen B-1  
Peralta Abadia, Patricia  orcid-logo
Digitales und autonomes Bauen B-1  
Seitz, Lucia 
Digitales und autonomes Bauen B-1  
TORE-URI
https://hdl.handle.net/11420/59318
Citation
15th International Workshop on Structural Health Monitoring, IWSHM 2025
Contribution to Conference
15th International Workshop on Structural Health Monitoring, IWSHM 2025  
Publisher DOI
10.12783/shm2025/37344
Publisher
Destech Publications, Inc.
Structural health monitoring (SHM) is fundamental in decision making for damage identification and prescriptive maintenance of civil infrastructure. Traditional decisionmaking methods often fall short in integrating heterogeneous sensor data, inherent to SHM, and the natural language processing required to interpret, e.g., inspection reports, expert assessments, and historical documentation relevant to prescriptive maintenance. To address these limitations, this study introduces a framework for integrating large language models (LLMs) into SHM workflows, facilitating decision making in damage identification and prescriptive maintenance. The proposed framework links convolutional neural networks (CNNs) with generative LLMs. Unlike approaches based solely on prompt engineering, this study applies task-specific fine-tuning via low-rank adaptation (LoRA) to the Mistral-7B-Instruct-v0.1 model, using CNN-generated output and damage metadata as input. The results demonstrate – apart from the proof of concept – a successful generalization to previously unseen CNN-generated output, enabling context-sensitive damage identification. In conclusion, integrating LLMs into SHM workflows allows synthesizing heterogeneous sensor data and natural language, thus enhancing decision making for damage identification and prescriptive maintenance of civil infrastructure.
DDC Class
690: Building, Construction
Funding(s)
Modellierungs- und Bemessungskonzepte für die digitale Straße  
Qualitätsbewertung digitaler Zwillinge auf der Basis mathematischer Abstraktion und Tangle-basierten Blockchain-Architekturen  
Multi-Roboter-Kollaboration für Monitoring und Inspektionen von Ingenieurbauwerken  
Dezentrale digitale Zwillinge für das Bauwerksmonitoring  
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback