TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Einsatz von neuronalen Netzen zur Vorhersage des Materialvolumens von Injektionsbaustellen im Tunnelbau
 
Options

Einsatz von neuronalen Netzen zur Vorhersage des Materialvolumens von Injektionsbaustellen im Tunnelbau

Publikationstyp
Journal Article
Date Issued
2021-10
Sprache
German
Author(s)
Backhaus, Jan Onne  
Institut
Geotechnik und Baubetrieb B-5  
TORE-URI
http://hdl.handle.net/11420/10512
Journal
Bautechnik  
Volume
98
Issue
10
Start Page
767-774
Citation
Bautechnik 98 (10): 767-774 (2021-10)
Publisher DOI
10.1002/bate.202100018
Scopus ID
2-s2.0-85106328980
Use of neural networks for the prediction of the material volume of injection sites in tunnel construction. In this paper, a method is presented that uses digital documentation on injection construction sites to calculate automated, construction-accompanying predictions of the injection quantities still to be expected. In the construction project under investigation, waterproofing injections are being made as part of the Stuttgart 21 project for a 3.2 km long, twin-tube railroad tunnel. The presented method uses a particular form of a neural network, the Feed Forward Network. The network is trained with the injection quantities per tunnelmeter of one tunnel tube to predict the other's injection quantities. After a brief introduction to the operation of neural networks, it is shown that the presented method can forecast the total injection quantities with an accuracy > 5 %. Renesco GmbH has collected the data in cooperation with eguana GmbH.
Subjects
Building Management
construction management
construction time forecast
Geotechnical engineering
grouting
neural networks
tunneling
Tunnelling
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback