TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Modeling of time-dependent mechanical behavior of oleic acid nanocomposites using nanoindentation
 
Options

Modeling of time-dependent mechanical behavior of oleic acid nanocomposites using nanoindentation

Citation Link: https://doi.org/10.15480/882.9570
Publikationstyp
Journal Article
Date Issued
2024-06-01
Sprache
English
Author(s)
Kolli, Vasu  
Helmholtz-Zentrum Hereon  
Scheider, Ingo  
Helmholtz-Zentrum Hereon  
Ovri, Henry  
Helmholtz-Zentrum Hereon  
Giuntini, Diletta  
Keramische Hochleistungswerkstoffe M-9  
Cyron, Christian J.  
Kontinuums- und Werkstoffmechanik M-15  
TORE-DOI
10.15480/882.9570
TORE-URI
https://hdl.handle.net/11420/47455
Journal
Materials today / Communications  
Volume
39
Article Number
108892
Citation
Materials Today Communications 39: 108892 (2024)
Publisher DOI
10.1016/j.mtcomm.2024.108892
Scopus ID
2-s2.0-85191316257
Publisher
Elsevier
Supercrystalline nanocomposites are a burgeoning class of hybrid inorganic–organic materials. Studies showed that self-assembly of iron oxide particles surface-functionalized with organic (e.g. oleic acid) ligands produces a supercrystalline nanocomposite with exceptional mechanical properties. Consequently, significant research has been conducted on these materials to experimentally characterize the mechanical properties of such materials. However, so far all modeling studies used time and rate independent elastoplastic material models. In the light of new experimental results, we propose to extent this view and use time-dependent models to capture viscoelastic behavior. To this end, we quantified this behavior using nanoindentation creep experiments and modeled it using a rheological network model with several parallel Maxwell branches and an additional elasto-plastic branch. We demonstrate how the parameters of such a model can be found using inverse analysis. With the calibrated material model, a good agreement of the time dependent behavior between simulation and experimental results is achieved. Thus, a method is provided to model time dependent behavior using complex non-classical experiments like nanoindentation.
Subjects
Creep
Material modeling
Nanocomposites
Nanoindentation
Parameter identification
Superlattices
DDC Class
620: Engineering
541: Physical; Theoretical
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

1-s2.0-S2352492824008730-main.pdf

Type

Main Article

Size

3.24 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback