TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Extension of the Kaczmarz algorithm with a deep plug-and-play regularizer
 
Options

Extension of the Kaczmarz algorithm with a deep plug-and-play regularizer

Citation Link: https://doi.org/10.15480/882.9511
Publikationstyp
Journal Article
Date Issued
2024
Sprache
English
Author(s)
Tsanda, Artyom 
Biomedizinische Bildgebung E-5  
Jürß, Paul  
Biomedizinische Bildgebung E-5  
Hackelberg, Niklas  
Universitätsklinikum Hamburg-Eppendorf (UKE)  
Grosser, Mirco  
Biomedizinische Bildgebung E-5  
Möddel, Martin  orcid-logo
Biomedizinische Bildgebung E-5  
Knopp, Tobias  
Biomedizinische Bildgebung E-5  
TORE-DOI
10.15480/882.9511
TORE-URI
https://hdl.handle.net/11420/47225
Journal
International journal on magnetic particle imaging  
Volume
10
Issue
1, suppl. 1
Article Number
2403010
Citation
International Journal on Magnetic Particle Imaging 10 (1, suppl. 1): 2403010 (2024)
Publisher DOI
10.18416/IJMPI.2024.2403010
Scopus ID
2-s2.0-85187416174
Publisher
Infinite Science Publishing
The Kaczmarz algorithm is widely used for image reconstruction in magnetic particle imaging (MPI) because it converges rapidly and provides good image quality even after a few iterations. It is often combined with Tikhonov regularization to cope with noisy measurements and the ill-posed nature of the imaging problem. In this abstract, we propose to combine the Kaczmarz method with a plug-and-play (PnP) denoiser for regularization, which can provide more specific prior knowledge than handcrafted priors. Using measurement data of a spiral phantom, we show that Kaczmarz-PnP yields excellent image quality, while speeding up the already fast convergence. Since the PnP denoiser is not coupled to the imaging operator, the Kaczmarz-PnP method is very generic and can be used for image reconstruction independently of the measurement sequence and MPI tracer type.
DDC Class
610: Medicine, Health
620: Engineering
Funding(s)
SFB 1615 - SMARTe Reaktoren für die Verfahrenstechnik der Zukunft  
SFB 1615 - Teilprojekt B03: Magnetresonanzbildgebung von großräumigen mehrphasigen und reaktiven Strömungssystemen  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

IJMPI-Vol10-Iss1Suppl1-748.pdf

Type

Main Article

Size

459.02 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback