Options
Efficient approximations for many-visits multiple traveling salesman problems
Citation Link: https://doi.org/10.15480/882.4524
Publikationstyp
Preprint
Date Issued
2021
Sprache
English
Author(s)
Institut
TORE-DOI
A fundamental variant of the classical traveling salesman problem (TSP) is the so-called multiple TSP (mTSP), where a set of m salesmen jointly visit all cities from a set of n cities. The mTSP models many important real-life applications, in particular for vehicle routing problems. An extensive survey by Bektas (Omega 34(3), 2006) lists a variety of heuristic and exact solution procedures for the mTSP, which quickly solve particular problem instances.
In this work we consider a further generalization of mTSP, the many-visits mTSP, where each city v has a request r(v) of how many times it should be visited by the salesmen. This problem opens up new real-life applications such as aircraft sequencing, while at the same time it poses several computational challenges. We provide multiple efficient approximation algorithms for important variants of the many-visits mTSP, which are guaranteed to quickly compute high-quality solutions for all problem instances.
In this work we consider a further generalization of mTSP, the many-visits mTSP, where each city v has a request r(v) of how many times it should be visited by the salesmen. This problem opens up new real-life applications such as aircraft sequencing, while at the same time it poses several computational challenges. We provide multiple efficient approximation algorithms for important variants of the many-visits mTSP, which are guaranteed to quickly compute high-quality solutions for all problem instances.
DDC Class
510: Mathematik
Loading...
Name
2201.02054.pdf
Size
887.57 KB
Format
Adobe PDF