TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Supercritical drying of aerogels using CO2: effect of extraction time on the end material textural properties
 
Options

Supercritical drying of aerogels using CO2: effect of extraction time on the end material textural properties

Publikationstyp
Journal Article
Date Issued
2012-03-08
Sprache
English
Author(s)
García-González, Carlos A.  
Camino-Rey, M. C.  
Alnaief, Mohammad  
Zetzl, Carsten  
Smirnova, Irina  orcid-logo
Institut
Thermische Verfahrenstechnik V-8  
TORE-URI
http://hdl.handle.net/11420/12544
Journal
The journal of supercritical fluids  
Volume
66
Start Page
297
End Page
306
Citation
Journal of Supercritical Fluids 66: 297-306 (2012-06-01)
Publisher DOI
10.1016/j.supflu.2012.02.026
Scopus ID
2-s2.0-84860670827
Publisher
Elsevier Science
Aerogel technology provides high added-value lightweight materials with outstanding textural properties (i.e., high surface area and open porosity). Aerogels are obtained from wet gels by using a suitable drying technology, usually supercritical drying process, able to avoid the pore collapse phenomenon in order to keep intact the porous texture of the wet material. In this sense, the study of the kinetic profile of the gel supercritical drying is regarded as a key aspect to be considered in the specific case of the design of aerogel-based systems. In this work, the drying profile with supercritical carbon dioxide (scCO 2) of alcogels (in ethanol) was determined using a customized supercritical fluid extraction equipment. The drying of alcogels from different precursors (inorganic-silica-, organic-starch-), densities (silica aerogel of densities 0.08 and 0.15 g/cm 3) and morphologies (cylindrical monoliths, microspheres) was studied. Depending on the nature of the gel precursor, the extent of drying (i.e., drying time duration) gave significant differences in the end textural properties of the dried gel.
Subjects
Aerogel
Drying time
Supercritical drying
Textural properties
DDC Class
600: Technik
More Funding Information
C.A. García-González acknowledges the Spanish Ministry of Education for the financial support through a postdoctoral fellowship in the frame of the National Program for Staff Mobility from the R&D&i National Plan 2008–2011.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback