Options
Accelerated electro-fermentation of acetoin in escherichia coli by identifying physiological limitations of the electron transfer kinetics and the central metabolism
Citation Link: https://doi.org/10.15480/882.3742
Publikationstyp
Journal Article
Publikationsdatum
2020-11-23
Sprache
English
Author
Enthalten in
Volume
8
Issue
11
Start Page
1
Article Number
1843
Citation
Microorganisms 8 (11): 1843 (2020-11)
Publisher DOI
Scopus ID
Publisher
Molecular Diversity Preservation International
Anode-assisted fermentations offer the benefit of an anoxic fermentation routine that can be applied to produce end-products with an oxidation state independent from the substrate. The whole cell biocatalyst transfers the surplus of electrons to an electrode that can be used as a non-depletable electron acceptor. So far, anode-assisted fermentations were shown to provide high carbon efficiencies but low space-time yields. This study aimed at increasing space-time yields of an Escherichia coli-based anode-assisted fermentation of glucose to acetoin. The experiments build on an obligate respiratory strain, that was advanced using selective adaptation and targeted strain development. Several transfers under respiratory conditions led to point mutations in the pfl, aceF and rpoC gene. These mutations increased anoxic growth by three-fold. Furthermore, overexpression of genes encoding a synthetic electron transport chain to methylene blue increased the electron transfer rate by 2.45-fold. Overall, these measures and a medium optimization increased the space-time yield in an electrode-assisted fermentation by 3.6-fold.
Schlagworte
Acetoin
Bulk chemicals
Electro-fermentation
Escherichia coli
Metabolic engineering
Methylene blue
DDC Class
570: Biowissenschaften, Biologie
Funding Organisations
More Funding Information
We are grateful for the financial support from the German Ministry of Education and Research (BMBF) under the Program 03SF0496B. We also thank the State of Baden-Wuerttemberg for a direct scholarship to Laura-Alina Philipp.
Publication version
publishedVersion
Loading...
Name
microorganisms-08-01843-v2.pdf
Size
3.56 MB
Format
Adobe PDF