TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. DEM-based analysis of fatigue-induced damage using a cycle-jump technique
 
Options

DEM-based analysis of fatigue-induced damage using a cycle-jump technique

Publikationstyp
Conference Paper
Date Issued
2024-11
Sprache
English
Author(s)
Rybczynski, Sebastian  
Baustoffe, Bauphysik und Bauchemie B-3  
Schaan, Gunnar  
Betriebseinheit Elektronenmikroskopie M-26  
Skorych, Vasyl  
Feststoffverfahrenstechnik und Partikeltechnologie V-3  
Ritter, Martin  orcid-logo
Betriebseinheit Elektronenmikroskopie M-26  
Schmidt-Döhl, Frank  orcid-logo
Baustoffe, Bauphysik und Bauchemie B-3  
TORE-URI
https://hdl.handle.net/11420/54302
Start Page
185
End Page
194
Citation
20th fib Symposium on ReConStruct: Resilient Concrete Structures, 2024
Contribution to Conference
20th fib Symposium on ReConStruct: Resilient Concrete Structures, 2024  
Scopus ID
2-s2.0-85216934029
Publisher
fib. The International Federation for Structural Concrete
ISBN
978-2-9406-4325-7
This paper examines experimental and numerical findings regarding the fatigue characteristics of ultra-high performance concrete (UHPC). To provide detailed characterisation of fatigue-induced damage, UHPC specimens underwent analysis using scanning and transmission electron microscopy (SEM and TEM). Results demonstrated that a densification of the binder matrix occurs accompanied by a transformation of nanoscale ettringite, and the content of unhydrated cement clinker influences the fatigue resistance of UHPC. Numerical investigations of the mechanical behavior of UHPC employed the bonded-particle model (BPM), calibrated with experimental data. The mesoscopic BPM model comprises three phases: matrix, ITZ (interfacial transition zone), and aggregate. A novel rheological fatigue formulation for binder and ITZ bonds was developed to introduce minor scale variations and plastic deformations, accurately replicating fatigue behavior. Additionally, a cyclic-jump technique enabled the analysis of both low-cycle and high-cycle simulations.
Subjects
Cycle-jumps | DEM | Fatigue | ultra-high performance concrete
DDC Class
600: Technology
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback