TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Simulating Gadolinium-induced magnetic field variations for temperature sensing with magneto-mechanical resonators
 
Options

Simulating Gadolinium-induced magnetic field variations for temperature sensing with magneto-mechanical resonators

Publikationstyp
Preprint
Date Issued
2025-08-29
Sprache
English
Author(s)
Faltinath, Jonas 
Biomedizinische Bildgebung E-5  
Schmitz, Miriam  
Biomedizinische Bildgebung E-5  
Förger, Fynn  orcid-logo
Biomedizinische Bildgebung E-5  
Knopp, Tobias  
Biomedizinische Bildgebung E-5  
Möddel, Martin  orcid-logo
Biomedizinische Bildgebung E-5  
TORE-URI
https://hdl.handle.net/11420/60308
Citation
arXiv: 2508.21794 (2025)
Contribution to Conference
IEEE Sensors 2025  
Publisher DOI
10.48550/arXiv.2508.21794
ArXiv ID
2508.21794
Small-size magneto-mechanical resonators (MMR) represent an emerging class of passive, wireless sensors that combine a sensing functionality with a tracking option. The operation principle is based on a resonating rotor oscillation whose frequency is defined by the magnetic flux density of a stator magnet. One general sensing mechanism is the coupling of an external parameter to this resonator frequency. In this study, we investigate an approach for encoding a temperature information as a shift in the natural oscillation frequency utilizing the temperature-dependent magnetic properties of gadolinium (Gd). We perform an isolated simulation study on the temperature scaling of the magnetic field generation for stators coated with Gd of varying thickness. Our results show that the magnetic phase transition of Gd at its Curie temperature leads to a pronounced change in the magnetic permeability enabling a significant magnetic shielding behavior only for lower temperatures. In the transition regime, we find a peak sensitivity reaching 45.8 Hz/K exceeding existing values from the literature by up to a factor of 20. The findings of this work are an important step toward quantitative high-sensitivity temperature extraction with MMRs.
DDC Class
600: Technology
Funding(s)
SFB 1615 - SMARTe Reaktoren für die Verfahrenstechnik der Zukunft  
SFB 1615 - Teilprojekt B03: Magnetresonanzbildgebung von großräumigen mehrphasigen und reaktiven Strömungssystemen  
Lizenz
https://creativecommons.org/licenses/by/4.0/
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback