TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Automated isocenter optimization approach for treatment planning for gyroscopic radiosurgery
 
Options

Automated isocenter optimization approach for treatment planning for gyroscopic radiosurgery

Citation Link: https://doi.org/10.15480/882.8865
Publikationstyp
Journal Article
Date Issued
2023-08-13
Sprache
English
Author(s)
Stapper, Carolin  
Medizintechnische und Intelligente Systeme E-1  
Gerlach, Stefan  orcid-logo
Medizintechnische und Intelligente Systeme E-1  
Hofmann, Theresa  
Fürweger, Christoph  
Schlaefer, Alexander  
Medizintechnische und Intelligente Systeme E-1  
TORE-DOI
10.15480/882.8865
TORE-URI
https://hdl.handle.net/11420/44317
Journal
Medical physics  
Volume
50
Issue
8
Start Page
5212
End Page
5221
Citation
Medical Physics 50 (8): 5212-5221 (2023)
Publisher DOI
10.1002/mp.16436
Scopus ID
2-s2.0-85153729691
Publisher
Wiley
Peer Reviewed
true
Background: Radiosurgery is a well-established treatment for various intracranial tumors. In contrast to other established radiosurgery platforms, the new ZAP-X® allows for self-shielding gyroscopic radiosurgery. Here, treatment beams with variable beam-on times are targeted towards a small number of isocenters. The existing planning framework relies on a heuristic based on random selection or manual selection of isocenters, which often leads to a higher plan quality in clinical practice. Purpose: The purpose of this work is to study an improved approach for radiosurgery treatment planning, which automatically selects the isocenter locations for the treatment of brain tumors and diseases in the head and neck area using the new system ZAP-X®. Methods: We propose a new method to automatically obtain the locations of the isocenters, which are essential in gyroscopic radiosurgery treatment planning. First, an optimal treatment plan is created based on a randomly selected nonisocentric candidate beam set. The intersections of the resulting subset of weighted beams are then clustered to find isocenters. This approach is compared to sphere-packing, random selection, and selection by an expert planner for generating isocenters. We retrospectively evaluate plan quality on 10 acoustic neuroma cases. Results: Isocenters acquired by the method of clustering result in clinically viable plans for all 10 test cases. When using the same number of isocenters, the clustering approach improves coverage on average by 31 percentage points compared to random selection, 15 percentage points compared to sphere packing and 2 percentage points compared to the coverage achieved with the expert selected isocenters. The automatic determination of location and number of isocenters leads, on average, to a coverage of 97 ± 3% with a conformity index of 1.22 ± 0.22, while using 2.46 ± 3.60 fewer isocenters than manually selected. In terms of algorithm performance, all plans were calculated in less than 2 min with an average runtime of 75 ± 25 s. Conclusions: This study demonstrates the feasibility of an automatic isocenter selection by clustering in the treatment planning process with the ZAP-X® system. Even in complex cases where the existing approaches fail to produce feasible plans, the clustering method generates plans that are comparable to those produced by expert selected isocenters. Therefore, our approach can help reduce the effort and time required for treatment planning in gyroscopic radiosurgery.
Subjects
gyroscopic radiosurgery
radiation therapy
treatment planning
ZAP-X
DDC Class
610: Medicine, Health
Funding(s)
Projekt DEAL  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by-nc/4.0/
Loading...
Thumbnail Image
Name

Medical Physics - 2023 - Stapper - Automated isocenter optimization approach for treatment planning for gyroscopic.pdf

Type

Main Article

Size

1.66 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback