TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Demystifying the semiconductor-to-metal transition in amorphous Vanadium pentoxide: the role of substrate/thin film interfaces
 
Options

Demystifying the semiconductor-to-metal transition in amorphous Vanadium pentoxide: the role of substrate/thin film interfaces

Citation Link: https://doi.org/10.15480/882.13346
Publikationstyp
Journal Article
Date Issued
2024-07-24
Sprache
English
Author(s)
Esther, A. Carmel Mary
Garlapati, Mohan Muralikrishna  
Chirumamilla, Manohar 
Optische und Elektronische Materialien E-12  
Da Silva Pinto Manoel W.  
Ostendorp, Stefan  
Peterlechner, Martin  
Petrov, Alexander  orcid-logo
Optische und Elektronische Materialien E-12  
Eich, Manfred  
Optische und Elektronische Materialien E-12  
Divinski, Sergiy V.  
Hahn, Horst  
Wilde, Gerhard  
TORE-DOI
10.15480/882.13346
TORE-URI
https://hdl.handle.net/11420/49325
Journal
Advanced functional materials  
Volume
34
Issue
30
Article Number
2309544
Citation
Advanced Functional Materials 34 (30): 2309544 (2024)
Publisher DOI
10.1002/adfm.202309544
Scopus ID
2-s2.0-85189809505
Publisher
Wiley-VCH
The precise mechanism governing the reversible semiconductor-to-metal transition (SMT) in V2O5 remains elusive, yet its investigation is of paramount importance due to the remarkable potential of V2O5 as a versatile “smart” material in advancing optoelectronics, plasmonics, and photonics. In this study, distinctive experimental insights into the SMT occurring in amorphous V2O5 through the application of highly sensitive, temperature-dependent, in situ analyses on a V2O5 thin film deposited on soda-lime glass are presented. The ellipsometry measurements reveal that the complete SMT occurs at ≈340 °C. Remarkably, the refractive index and extinction coefficients exhibit reversible characteristics across visible and near-infrared wavelengths, underscoring the switch-like behavior inherent to V2O5. The findings obtained from ellipsometry are substantiated by calorimetry and in situ secondary ion mass spectrometry analyses. In situ electron microscopy observations unveil a separation of oxidation states within V2O5 at 320 °C, despite the thin film retaining its amorphous state. The comprehensive experimental investigations effectively demonstrate that alterations in electronic state can trigger the SMT in amorphous V2O5. It is revealed for the first time that the SMT in V2O5 is solely contingent upon electronic state changes, independent of structural transitions, and importantly, it is a reversible transformation within the amorphous state itself.
Subjects
electron energy-loss spectroscopy
ellipsometry
in situ secondary Ion mass spectroscopy
in situ transmission electron microscopy
phase transition
semiconductor to metal transition
vanadium oxide
DDC Class
620.1: Engineering Mechanics and Materials Science
Funding(s)
SFB 986: Teilprojekt C01 - Multiskalige photonische Materialien mit anpassbarer Absorption und thermischer Emission  
Lizenz
https://creativecommons.org/licenses/by-nc/4.0/
Loading...
Thumbnail Image
Name

Adv Funct Materials - 2024 - Esther - Demystifying the Semiconductor‐to‐Metal Transition in Amorphous Vanadium Pentoxide .pdf

Type

Main Article

Size

2.78 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback