TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Identification of composite sensor faults in structural health monitoring systems using long short-term memory networks
 
Options

Identification of composite sensor faults in structural health monitoring systems using long short-term memory networks

Publikationstyp
Conference Paper
Date Issued
2024-07
Sprache
English
Author(s)
Al-Zuriqat, Thamer 
Digitales und autonomes Bauen B-1  
Al-Nasser, Heba 
Digitales und autonomes Bauen B-1  
Dragos, Kosmas  
Digitales und autonomes Bauen B-1  
Chillón Geck, Carlos  
Digitales und autonomes Bauen B-1  
Smarsly, Kay  
Digitales und autonomes Bauen B-1  
TORE-URI
https://hdl.handle.net/11420/49122
Volume
2024
Start Page
446
End Page
453
Citation
European Conference on Computing in Construction, EC3 2024
Contribution to Conference
European Conference on Computing in Construction, EC3 2024  
Publisher DOI
10.35490/EC3.2024.172
Scopus ID
2-s2.0-85203434710
Publisher
European council on computing in construction
ISBN
978-90-834513-0-5
Fault identification (FI) is an integral part of sensor fault diagnosis in structural health monitoring (SHM) systems. However, current FI approaches often overlook composite sensor faults, i.e. different sensor fault types occurring simultaneously within an individual sensor. As a result, actual fault occurrences in real-world SHM systems may be underestimated. This paper introduces an FI approach utilizing long short-term memory networks, addressing composite faults. The FI approach is validated using sensor data recorded by a real-world SHM system. The results demonstrate the capability of the FI approach to identify composite sensor faults, thus enhancing the reliability and accuracy of fault diagnosis.
DDC Class
690: Building, Construction
Funding(s)
Explainable fault diagnosis for smart cities  
Verbundprojekt: Automatische Bewertung von Monitoringdaten von Infrastrukturbauwerken mithilfe von KI und IoT - IDA-KI -, Teilvorhaben: Technische Universität Hamburg  
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback