TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Fast gradient estimation for variational quantum algorithms
 
Options

Fast gradient estimation for variational quantum algorithms

Publikationstyp
Preprint
Date Issued
2022-10-12
Sprache
English
Author(s)
Bittel, Lennart  
Watty, Jens  
Kliesch, Martin  
TORE-URI
http://hdl.handle.net/11420/14133
Citation
arXiv: 2210.06484 (2022)
Publisher DOI
10.48550/arXiv.2210.06484
ArXiv ID
2210.06484v1
Many optimization methods for training variational quantum algorithms are based on estimating gradients of the cost function. Due to the statistical nature of quantum measurements, this estimation requires many circuit evaluations, which is a crucial bottleneck of the whole approach. We propose a new gradient estimation method to mitigate this measurement challenge and reduce the required measurement rounds. Within a Bayesian framework and based on the generalized parameter shift rule, we use prior information about the circuit to find an estimation strategy that minimizes expected statistical and systematic errors simultaneously. We demonstrate that this approach can significantly outperform traditional gradient estimation methods, reducing the required measurement rounds by up to an order of magnitude for a common QAOA setup. Our analysis also shows that an estimation via finite differences can outperform the parameter shift rule in terms of gradient accuracy for small and moderate measurement budgets.
Subjects
Quantum Physics
MLE@TUHH
DDC Class
530: Physics
Funding(s)
Effiziente Materialsimulation auf NISQ-Quantencomputern - Effizientes Auslesen von hybriden Quantencomputern  
Verifizierung und Charakterisierung von Quantentechnologie  
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback