TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Combinatorial n-fold integer programming and applications
 
Options

Combinatorial n-fold integer programming and applications

Citation Link: https://doi.org/10.15480/882.2685
Publikationstyp
Journal Article
Date Issued
2020-11-01
Sprache
English
Author(s)
Knop, Dušan  
Koutecký, Martin  
Mnich, Matthias  orcid-logo
Institut
Algorithmen und Komplexität E-11  
TORE-DOI
10.15480/882.2685
TORE-URI
http://hdl.handle.net/11420/4313
Journal
Mathematical programming  
Volume
184
Issue
1-2
Citation
Mathematical Programming (2020)
Publisher DOI
10.1007/s10107-019-01402-2
Scopus ID
2-s2.0-85075419122
ArXiv ID
1705.08657v2
Publisher
Springer
Many fundamental NP-hard problems can be formulated as integer linear programs (ILPs). A famous algorithm by Lenstra solves ILPs in time that is exponential only in the dimension of the program, and polynomial in the size of the ILP. That algorithm became a ubiquitous tool in the design of fixed-parameter algorithms for NP-hard problems, where one wishes to isolate the hardness of a problem by some parameter. However, in many cases using Lenstra’s algorithm has two drawbacks: First, the run time of the resulting algorithms is often double-exponential in the parameter, and second, an ILP formulation in small dimension cannot easily express problems involving many different costs. Inspired by the work of Hemmecke et al. (Math Program 137(1–2, Ser. A):325–341, 2013), we develop a single-exponential algorithm for so-called combinatorialn-fold integer programs, which are remarkably similar to prior ILP formulations for various problems, but unlike them, also allow variable dimension. We then apply our algorithm to many relevant problems problems like Closest String, Swap Bribery, Weighted Set Multicover, and several others, and obtain exponential speedups in the dependence on the respective parameters, the input size, or both. Unlike Lenstra’s algorithm, which is essentially a bounded search tree algorithm, our result uses the technique of augmenting steps. At its heart is a deep result stating that in combinatorial n-fold IPs, existence of an augmenting step implies existence of a “local” augmenting step, which can be found using dynamic programming. Our results provide an important insight into many problems by showing that they exhibit this phenomenon, and highlights the importance of augmentation techniques.
Subjects
Augmentation algorithm
Closest string
Fixed-parameter algorithms
Integer programming
DDC Class
600: Technik
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback