TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Invertibility at Infinity of Band-Dominated Operators on the Space of Essentially Bounded Functions
 
Options

Invertibility at Infinity of Band-Dominated Operators on the Space of Essentially Bounded Functions

Publikationstyp
Journal Article
Date Issued
2004
Sprache
English
Author(s)
Lindner, Marko  orcid-logo
Silbermann, Bernd  
TORE-URI
http://hdl.handle.net/11420/10575
Start Page
297
End Page
325
Citation
In: Operator Theoretical Methods and Applications to Mathematical Physics [297-325]
Publisher DOI
10.1007/978-3-0348-7926-2_32
Publisher
Springer
he topic of this paper is band operators and the norm limits of such — so-called band-dominated operators, both classes acting on L∞(ℝn). Invertibility at infinity is closely related to Fredholmness. In fact, in the discrete case ℓp(ℤn), 1 ≤ p ≤ ∞, both properties coincide. For many applications, e.g., the question of applicability of certain approximation methods, in the situation at hand, Lp(ℝn), 1 ≤ p ≤ ∞, it has however proved to be useful to study invertibility at infinity rather than Fredholmness.

We will present a criterion for a band-dominated operator’s invertibility at infinity in terms of the invertibility of its limit operators. It is the same criterion that was found for ℓp(ℤn), 1 < p < ∞ in [21] and for the C*- algebra L 2 (ℝn in [22]. Our investigations concentrate on one of the most unvolved cases, being L ∞(ℝn). With the techniques presented here it is clear now how the remaining cases ℓ1, ℓ∞ and L p, (p≠2) have to be treated.
Subjects
Compact Operator
Toeplitz Operator
Limit Operator
Convolution Operator
Fredholm Property
DDC Class
510: Mathematik
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback