Options
A polynomial chaos approach to stochastic LQ optimal control: error bounds and infinite-horizon results
Citation Link: https://doi.org/10.15480/882.14602
Publikationstyp
Journal Article
Date Issued
2025-02-06
Sprache
English
TORE-DOI
Journal
Volume
174
Article Number
112117
Citation
Automatica 174: 112117 (2025)
Publisher DOI
Scopus ID
Publisher
Elsevier
The stochastic linear–quadratic regulator problem subject to Gaussian disturbances is well known and usually addressed via a moment-based reformulation. Here, we leverage polynomial chaos expansions, which model random variables via series expansions in a suitable L2 probability space, to tackle the non-Gaussian case. We present the optimal solutions for finite and infinite horizons and we analyze the infinite-horizon asymptotics. We show that the limit of the optimal state-input trajectory is the unique solution to a corresponding stochastic stationary optimization problem in the sense of probability measures. Moreover, we provide a constructive error analysis for finite-dimensional polynomial chaos approximations of the optimal solutions and of the optimal stationary pair in non-Gaussian settings. A numerical example illustrates our findings.
Subjects
Linear–quadratic regulator | Non-Gaussian distributions | Polynomial chaos | Stochastic optimal control | Stochastic stationarity
DDC Class
519: Applied Mathematics, Probabilities
Publication version
publishedVersion
Loading...
Name
1-s2.0-S0005109825000081-main.pdf
Type
Main Article
Size
1.08 MB
Format
Adobe PDF