TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Boson-Sampling in the light of sample complexity
 
Options

Boson-Sampling in the light of sample complexity

Publikationstyp
Preprint
Date Issued
2013-06-17
Sprache
English
Author(s)
Gogolin, Christian  
Kliesch, Martin  
Aolita, Leandro  
Eisert, Jens  
TORE-URI
http://hdl.handle.net/11420/14166
Citation
arXiv: 1306.3995 (2013)
Publisher DOI
10.48550/arXiv.1306.3995
ArXiv ID
1306.3995
Boson-Sampling is a classically computationally hard problem that can - in principle - be efficiently solved with quantum linear optical networks. Very recently, a rush of experimental activity has ignited with the aim of developing such devices as feasible instances of quantum simulators. Even approximate Boson-Sampling is believed to be hard with high probability if the unitary describing the optical network is drawn from the Haar measure. In this work we show that in this setup, with probability exponentially close to one in the number of bosons, no symmetric algorithm can distinguish the Boson-Sampling distribution from the uniform one from fewer than exponentially many samples. This means that the two distributions are operationally indistinguishable without detailed a priori knowledge. We carefully discuss the prospects of efficiently using knowledge about the implemented unitary for devising non-symmetric algorithms that could potentially improve upon this. We conclude that due to the very fact that Boson-Sampling is believed to be hard, efficient classical certification of Boson-Sampling devices seems to be out of reach.
Subjects
Quantum Physics
Quantum Physics
Computer Science - Computational Complexity
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback