TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Synergistic and antagonistic influences of trace elements on volatile fatty acids degradation and methane production during the methanization of a mixture of volatile fatty acids
 
Options

Synergistic and antagonistic influences of trace elements on volatile fatty acids degradation and methane production during the methanization of a mixture of volatile fatty acids

Publikationstyp
Journal Article
Date Issued
2018-02
Sprache
English
Author(s)
Ezebuiro, Nwagbo Christpeace  
Techamanoon, Krisada  
Körner, Ina  orcid-logo
Institut
Abwasserwirtschaft und Gewässerschutz B-2  
TORE-URI
http://hdl.handle.net/11420/3129
Journal
Journal of environmental chemical engineering  
Volume
6
Issue
1
Start Page
1455
End Page
1467
Citation
Journal of Environmental Chemical Engineering 1 (6): 1455-1467 (2018-02)
Publisher DOI
10.1016/j.jece.2017.12.017
Scopus ID
2-s2.0-85041485451
Anaerobic digestion (AD3) for methane production is also known as methanization. Trace elements (TEs4 ) as supplements are essential for enzyme activities and may improve methanization, but could also be toxic. Volatile fatty acids (VFA5) are formed during the AD of substrates and become inhibitory if accumulated. The level of ambiguity regarding optimum combination and concentration (configuration) of TEs for the improvement of VFA degradation and methane production during methanization is high. Therefore, mesophilic batch AD experiments with TEs supplementation were carried out in 1L reactors. A mixture of VFA (butyric, propionic and acetic acids) that was prepared in different concentrations (28-, 116-, and 213 mmol/L VFA) was used as substrate. The VFA degradation rate and methane production were the main responses that were investigated and analysed using multivariate analyses. The major aim of the work was to model interaction effects of the most important TEs in AD − Ni, Co, Se and Mo, and of VFA. Also, the adaptation time of the methanization process to the TEs was investigated. In the result, TEs supplementation caused variable effects on VFA degradation rate (from −10% to +139%); and methane production (from −33% to +55%). Regarding TEs interactions, for VFA degradation rate, the significant synergistic interactions included VFA*Se, Ni*Mo, VFA*Mo and Ni*Se; and the antagonistic interaction was Co*Mo. Similarly, for methane production, the significant synergistic interaction included Ni*Co and the antagonistic interaction was VFA*Ni.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback