TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Unsteady aerodynamics of large-scale floating offshore wind turbines in surge motion
 
Options

Unsteady aerodynamics of large-scale floating offshore wind turbines in surge motion

Citation Link: https://doi.org/10.15480/882.16571
Publikationstyp
Journal Article
Date Issued
2025-12-15
Sprache
English
Author(s)
Schulz, Christian W.  orcid-logo
Fluiddynamik und Schiffstheorie M-8  
Bergua, Roger  
Branlard, Emmanuel  
Netzband, Stefan 
Fluiddynamik und Schiffstheorie M-8  
Jonkman, Jason  
Roberston, Amy
TORE-DOI
10.15480/882.16571
TORE-URI
https://hdl.handle.net/11420/61085
Journal
Renewable Energy  
Volume
260
Article Number
124977
Citation
Renewable Energy 260: 124977 (2026)
Publisher DOI
10.1016/j.renene.2025.124977
Scopus ID
2-s2.0-105027137223
Publisher
Elsevier
Unsteady aerodynamic loads significantly influence the design and wake flow field of floating offshore wind turbines, especially due to wave- or vibration-induced tower top motions triggering various unsteady phenomena. Recent studies show that increasing turbine sizes amplify unsteady aerodynamic effects, as their impact typically grows with rotor diameter. This work combines recent findings from experiments and simulations on model-scale FOWT aerodynamics with new numerical analyses of large-scale rotors, providing a comprehensive understanding of unsteady phenomena occurrence and impact. Numerical analyses of the IEA 15-MW and 22-MW rotors undergoing surge motions characterise the combined influence of motion-induced unsteady phenomena on rotor thrust. Results indicate that unsteady effects can reduce thrust force variations by up to 40% at realistic surge periods. These findings contrast with prior model-scale rotor investigations, attributed to the specialised design of the model rotors. Comparisons between numerical methods — the dynamic blade element momentum method in OpenFAST and free vortex wake modules in panMARE and OpenFAST — reveal persistent differences in thrust predictions under both idealised and realistic conditions. This highlights that classical blade element momentum approaches require enhancement to accurately capture unsteady loads on large-scale floating offshore wind turbines at low wind speeds.
Subjects
Floating wind
FOWT
IEA 15-MW
Returning wake
Surge motion
Unsteady aerodynamics
DDC Class
621: Applied Physics
530: Physics
005.1: Programming
Funding(s)
Validierung, Messung und Optimierung von schwimmenden Windenergiesystemen; Teilvorhaben: Erweiterung und Validierung einer Panelmethode zur Simulation des dynamischen Betriebsverhaltens schwimmender Windenergiesysteme  
Projekt DEAL  
Lizenz
https://creativecommons.org/licenses/by/4.0/
Publication version
publishedVersion
Loading...
Thumbnail Image
Name

1-s2.0-S0960148125026412-main.pdf

Type

Main Article

Size

3.11 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback