TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Assessment of power consumption of helicopter flight control systems without swashplate
 
Options

Assessment of power consumption of helicopter flight control systems without swashplate

Citation Link: https://doi.org/10.15480/882.210
Publikationstyp
Conference Paper
Date Issued
2004
Sprache
English
Author(s)
Neuheuser, Tom  
Carl, Udo B.  
Institut
Flugzeug-Systemtechnik M-7  
TORE-DOI
10.15480/882.210
TORE-URI
http://tubdok.tub.tuhh.de/handle/11420/212
Nowadays helicopter flight control in the most common configurations is realized by collective and cyclic variation of the angle of attack of each rotor blade. The collective blade control pitches the rotor blades to equal angles of attack around their longitudinal axis, changing the rotor thrust at constant rotor speed. Yaw and roll control is realized via cyclic blade motion by changing the angle of attack of every rotor blade locally and periodically during one revolution. Although fly-by-wire and fly-by-light technologies slowly have found entry into helicopter flight control systems in the last years, complex mechanical systems are state-of-the-art to transfer all required control signals and forces from the fuselage into the rotating main rotor system. By Individual Blade Control (IBC) in higher harmonic modes and with additional actuators in the rotating system, fuselage vibrationsand radiated noise can be reduced and as well other IBC effects. This technology is subject of intensive research work. The intention of the research project INHUS ("Innovative Steuerungskonzepte für Hubschrauber") is the identification of a combined actuation system for primary flight control and IBC, which corresponds to the essential requirements of light weight, low control power consumption and high reliability. Therefore, a wide variety of technologies will be evaluated in terms of aforementioned requirements, uneffected by known flight control implementations in helicopters. The content of this paper is the comparison of the required power of different hydraulic and electric actuation systems, designed on the basis of specification data of a 20 tons.helicopter during several steady flight conditions.
Subjects
electric control
diplacement control
helicopter
valve control
helicopter flight control actuation system
Lizenz
http://rightsstatements.org/vocab/InC/1.0/
Loading...
Thumbnail Image
Name

208_4.pdf

Size

612.61 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback