TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Detection and localization of impact damages in carbon nanotube–modified epoxy adhesive films with printed circuits
 
Options

Detection and localization of impact damages in carbon nanotube–modified epoxy adhesive films with printed circuits

Publikationstyp
Journal Article
Date Issued
2018-09-01
Sprache
English
Author(s)
Augustin, Till  orcid-logo
Karsten, Julian  orcid-logo
Fiedler, Bodo  orcid-logo
Institut
Kunststoffe und Verbundwerkstoffe M-11  
TORE-URI
http://hdl.handle.net/11420/2554
Journal
Structural health monitoring  
Volume
17
Issue
5
Start Page
1166
End Page
1177
Citation
Structural Health Monitoring 5 (17): 1166-1177 (2018-09-01)
Publisher DOI
10.1177/1475921717738140
Scopus ID
2-s2.0-85036453320
The study deals with an online monitoring approach for adhesively bonded composite joints. A modification of epoxy-based adhesive films with carbon nanotubes allows for electrical resistance measurements through the bonding via inkjet-printed silver conductive circuits on the composites structure. Impact damages are introduced into adhesively bonded glass fiber–reinforced polymer specimens. In-plane and through-thickness electrical resistance measurements show the possibility of accurate damage detection and damage localization of the introduced damages in one or two dimensions, depending on the conductive path designs. The measured electrical resistance changes are compared with results from ultrasonic inspections and light microscopy observations. Furthermore, a linear correlation of electrical resistance and bond line thickness was found. The results demonstrate the applicability of the presented method in a structural health monitoring system.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback