TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. A methodology for the numeric time-cost forecast and pareto optimization of large Injection projects in tunneling
 
Options

A methodology for the numeric time-cost forecast and pareto optimization of large Injection projects in tunneling

Citation Link: https://doi.org/10.15480/882.3840
Publikationstyp
Doctoral Thesis
Date Issued
2021
Sprache
English
Author(s)
Backhaus, Jan Onne  
Advisor
Grabe, Jürgen  
Referee
Nübel, Konrad  
Ringle, Christian M.  orcid-logo
Title Granting Institution
Technische Universität Hamburg
Place of Title Granting Institution
Hamburg
Examination Date
2021-06-01
Institut
Geotechnik und Baubetrieb B-5  
TORE-DOI
10.15480/882.3840
TORE-URI
http://hdl.handle.net/11420/10567
First published in
Veröffentlichungen des Instituts für Geotechnik und Baubetrieb  
Number in series
49
Citation
Technische Universität Hamburg (2021)
Publisher
Technische Universität Hamburg, Institut für Geotechnik und Baubetrieb
Peer Reviewed
true
This thesis deals with selecting, implementing, testing, and evaluating numerical methods to support large construction projects’ construction management. The methods are bundled in a tool, which uses real-time construction process data measured on the construction site to compute project time and cost forecasts. These predictions are then combined in a numerical optimization algorithm to determine the Pareto optimal number and operating time of construction site machinery.
Subjects
tunneling
optimization
genetic algorithm
injection grouting
graph theory
statistics
construction management
simulation
neural networks
time- and cost forecast
discrete event simulation
DDC Class
690: Hausbau, Bauhandwerk
Publication version
publishedVersion
Lizenz
http://rightsstatements.org/vocab/InC/1.0/
Loading...
Thumbnail Image
Name

Backhaus2021.pdf

Size

88.1 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback