TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. The taper corrosion pattern observed for one bi-modular stem design is related to geometry-determined taper mechanics
 
Options

The taper corrosion pattern observed for one bi-modular stem design is related to geometry-determined taper mechanics

Publikationstyp
Journal Article
Date Issued
2017-08
Sprache
English
Author(s)
Bünte, Dennis  
Bryant, Michael  
Ward, Michael  
Neville, Anne  
Morlock, Michael  
Huber, Gerd  
Institut
Biomechanik M-3  
TORE-URI
http://hdl.handle.net/11420/2766
Journal
Medical engineering & physics  
Volume
46
Start Page
79
End Page
88
Citation
Medical Engineering and Physics (46): 79-88 (2017-08)
Publisher DOI
10.1016/j.medengphy.2017.06.003
Scopus ID
2-s2.0-85021084846
Bi-modular primary hip stems exhibit high revision rates owing to corrosion at the stem-neck taper, and are associated with local adverse tissue reactions. The aim of this study was to relate the wear patterns observed for one bi-modular design to its design-specific stem-neck taper geometry. Wear patterns and initial geometry of the taper junctions were determined for 27 retrieved bi-modular primary hip arthroplasty stems (Rejuvenate, Stryker Orthopaedics) using a tactile coordinate-measuring device. Regions of high-gradient wear patterns were additionally analyzed via optical and electron microscopy. The determined geometry of the taper junction revealed design-related engagement at its opening (angle mismatch), concentrated at the medial and lateral apexes (axes mismatch). A patch of retained topography on the proximal medial neck-piece taper apex was observed, surrounded by regions of high wear. On the patch, a deposit from the opposing female stem taper—containing Ti, Mo, Zr, and O—was observed. High stress concentrations were focused at the taper apexes owing to the specific geometry. A medial canting of the components may have augmented the inhomogeneous stress distributions in vivo. In the regions with high normal loads interfacial slip and consequently fretting was inhibited, which explains the observed pattern of wear.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback