TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Bounded DBM-based clock state construction for timed automata in Uppaal
 
Options

Bounded DBM-based clock state construction for timed automata in Uppaal

Citation Link: https://doi.org/10.15480/882.4821
Publikationstyp
Journal Article
Date Issued
2023-02
Sprache
English
Author(s)
Lehmann, Sascha 
Schupp, Sibylle  
Institut
Softwaresysteme E-16  
TORE-DOI
10.15480/882.4821
TORE-URI
http://hdl.handle.net/11420/13582
Journal
International journal on software tools for technology transfer  
Volume
25
Issue
1
Start Page
19
End Page
47
Citation
International journal on software tools for technology transfer 25 (1): 19-47 (2023-02)
Publisher DOI
10.1007/s10009-022-00667-x
Scopus ID
2-s2.0-85149640443
Publisher
Springer
When the simulation of a system, or the verification of its model, needs to be resumed in an online context, we face the problem that a particular starting state needs to be reached or constructed, from which the process is then continued. For timed automata, especially the construction of a desired clock state, represented as a difference bound matrix (DBM), can be problematic, as only a limited set of DBM operations is available, which often does not include the ability to set DBM entries individually to the desired value. In online applications, we furthermore face strict timing requirements imposed on the generation process. In this paper, we present an approach to construct a target clock state in a model via sequences of DBM operations (as supported by the model checker Uppaal), for which we can guarantee bounded lengths, solving the present problem of ever-growing sequences over time. The approach forges new intermediate states and transitions based on an overapproximation of the target state, followed by a constraining phase, until the target state is reached. We prove that the construction sequence lengths are independent of the original trace lengths and are determined by the number of system clocks only, allowing for state construction in bounded time. Furthermore, we implement the (re-)construction routines and an extended Uppaal model simulator which provides the original operation sequences. Applying the approach to a test model suite as well as randomly generated DBM operation sequences, we empirically validate the theoretical result and the implementation.
DDC Class
600: Technik
620: Ingenieurwissenschaften
Funding(s)
Projekt DEAL  
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

s10009-022-00667-x.pdf

Size

2.91 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback