TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. In situ compression of ceramic-organic supraparticles: Deformation and fracture behavior
 
Options

In situ compression of ceramic-organic supraparticles: Deformation and fracture behavior

Citation Link: https://doi.org/10.15480/882.15185
Publikationstyp
Journal Article
Date Issued
2025-10-01
Sprache
English
Author(s)
Yan, Cong 
Keramische Hochleistungswerkstoffe M-9  
Plunkett, Alexander  
Keramische Hochleistungswerkstoffe M-9  
Bor, Büsra  
Keramische Hochleistungswerkstoffe M-9  
Lilleodden, Erica  
Keramische Hochleistungswerkstoffe M-9  
Schneider, Gerold A.  
Keramische Hochleistungswerkstoffe M-9  
Giuntini, Diletta  
Keramische Hochleistungswerkstoffe M-9  
TORE-DOI
10.15480/882.15185
TORE-URI
https://hdl.handle.net/11420/55623
Journal
Journal of the European Ceramic Society  
Volume
45
Issue
13
Article Number
117482
Citation
Journal of the European Ceramic Society 45 (13): 117482 (2025)
Publisher DOI
10.1016/j.jeurceramsoc.2025.117482
Scopus ID
2-s2.0-105003994447
Publisher
Elsevier
Supercrystalline nanocomposites (SCNCs) feature intriguing functionalities and exceptional mechanical properties, but they are usually confronted with challenges when it comes to processing them in larger bulk form. One way to tackle this problem is a hierarchical approach, for which spherical SCNCs, i.e. supraparticles (SPs), are promising candidates as building blocks. Understanding the mechanical behavior of SPs is thus a key step towards the development of robust, multifunctional and macroscopic SCNCs. Hereby, in situ compression tests are performed on SPs with varying sizes and levels of crosslinking of their organic ligands. A size-dependent deformation and fracture behavior emerges. Plasticity occurs in larger SPs, while small ones exhibit brittle fracture. Surface stress and compaction affect the elastic modulus. Fracture initiation sites shift from the center of SPs to their equatorial belts with the decrease of SPs’ size. The inverse scaling relationship between fracture strength and SPs’ sizes is rationalized via Griffith theory.
Subjects
Compression | Fracture | Nanocomposites | Supercrystals | Supraparticles
DDC Class
620.11: Engineering Materials
530: Physics
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by/4.0/
Loading...
Thumbnail Image
Name

1-s2.0-S0955221925003024-main.pdf

Size

4.05 MB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback