TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publications
  4. Teaching machine learning and data literacy to students of logistics using Jupyter Notebooks
 
Options

Teaching machine learning and data literacy to students of logistics using Jupyter Notebooks

Citation Link: https://doi.org/10.15480/882.2943
Publikationstyp
Conference Paper
Date Issued
2020-09
Sprache
English
Author(s)
Kastner, Marvin  orcid-logo
Franzkeit, Janna  orcid-logo
Lainé, Anna  
Herausgeber*innen
Zender, Raphael  
Ifenthaler, Dirk  
Leonhardt, Thiemo  
Schumacher, Clara Sophia  
Institut
Maritime Logistik W-12  
Softwaresysteme E-16  
TORE-DOI
10.15480/882.2943
TORE-URI
http://hdl.handle.net/11420/7423
First published in
GI-Edition  
Number in series
P-308
Start Page
365
End Page
366
Citation
Fachtagung Bildungstechnologien der Gesellschaft für Informatik e.V. (DELFI 2020)
Contribution to Conference
DELFI 2020 – Die 18. Fachtagung Bildungstechnologien der Gesellschaft für Informatik e.V.  
Publisher Link
https://dl.gi.de/handle/20.500.12116/34190
https://api.ltb.io/show/BMRWS
Scopus ID
2-s2.0-85105448759
Publisher
Gesellschaft für Informatik e.V.
Teaching machine learning in fields outside of computer sciences can be challenging when the students do not have a solid code knowledge. In this work, the requirements for teaching data literacy and code literacy to students of logistics are explored. Specifically, the use of Jupyter Notebooks in a machine learning course for students in logistics is evaluated, using “Teaching and Learning with Jupyter” written by Barba et al. in 2019 that lists several teaching patterns for Jupyter Notebooks.
Subjects
Jupyter Notebooks
Code Literacy
Data Literacy
Machine Learning
Data Science
Logistics
Supply Chain
DDC Class
004: Informatik
370: Erziehung, Schul- und Bildungswesen
Funding(s)
Maschinelles Lernen in Theorie und Praxis  
More Funding Information
Bundesministerium für Bildung und Forschung (BMBF)
Publication version
publishedVersion
Lizenz
https://creativecommons.org/licenses/by-sa/4.0/
Loading...
Thumbnail Image
Name

365 DELFI2020_paper_35.pdf

Size

112.27 KB

Format

Adobe PDF

TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback