TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Extended Abstract: Data-Driven Test Generation for Black-Box Systems From Learned Decision Tree Models
 
Options

Extended Abstract: Data-Driven Test Generation for Black-Box Systems From Learned Decision Tree Models

Publikationstyp
Conference Paper
Date Issued
2023-03
Sprache
English
Author(s)
Plambeck, Swantje  orcid-logo
Eingebettete Systeme E-13  
Fey, Görschwin  orcid-logo
Eingebettete Systeme E-13  
TORE-URI
https://hdl.handle.net/11420/42887
Citation
26. Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen (MBMV 2023)
Contribution to Conference
26. Workshop Methoden und Beschreibungssprachen zur Modellierung und Verifikation von Schaltungen und Systemen, MBMV 2023  
Scopus ID
2-s2.0-85167446440
ISBN
9783800760664
Testing black-box systems is a difficult task, because no prior knowledge on the system is given that can be used for design and evaluation of tests. Learning a model of a black-box system from observations enables Model-Based Testing (MBT). We take a recent approach using decision tree learning to create a model of a black-box system and discuss the usage of such a decision tree model for test generation. A decision tree model especially facilitates MBT for black-box systems if no system reset is possible. A case study on a discrete system illustrates our MBT approach.
Subjects
MLE@TUHH
Funding(s)
Automatische Generierung von Modellen für Prädikation, Testen und Monitoring cyber-physischer Systeme  
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback