Options
Continuous monitoring meets synchronous transmissions and in-network aggregation
Publikationstyp
Conference Paper
Date Issued
2019-05
Sprache
English
Author(s)
Start Page
157
End Page
166
Article Number
8804806
Citation
Proceedings - 15th Annual International Conference on Distributed Computing in Sensor Systems, DCOSS 2019: 8804806, 157-166
Contribution to Conference
Publisher DOI
Scopus ID
Publisher
IEEE
ISBN
978-1-7281-0570-3
978-1-7281-0571-0
Continuously monitoring sensor readings is an important building block for many IoT applications. The literature offers resourceful methods that minimize the amount of communication required for continuous monitoring, where Geometric Monitoring (GM) is one of the most generally applicable ones. However, GM has unique communication requirements that require specialized network protocols to unlock the full potential of the algorithm. In this work, we show how application and protocol co-design can improve the real-life performance of GM, making it an application of practical value for real IoT deployments. We orchestrate the communication of GM to utilize the properties of a state-of-the-art wireless protocol (Crystal) that relies on synchronous transmissions and is designed for aperiodic traffic, as needed by GM. We bridge the existing gap between the capabilities of the protocol and the requirements of GM, especially in the case of periods of heavy communication. We do so by introducing an in-network aggregation technique relying on latent opportunities for aggregation that we exploit in Crystal's design, allowing us to reliably monitor duplicate-sensitive aggregate functions, such as sum, average or variance. Our results from testbed experiments with a publicly available dataset show that the combination of GM and Crystal results in a very small duty-cycle, a 2.2x - 3.2x improvement compared to the baseline and up to 10x compared to previous work. We also show that our in-network aggregation technique reduces the duty-cycle by up to 1.38x.
Subjects
Aggregation | Co-design | Continuous monitoring | Sensor networks | Synchronous transmissions
DDC Class
600: Technology