TUHH Open Research
Help
  • Log In
    New user? Click here to register.Have you forgotten your password?
  • English
  • Deutsch
  • Communities & Collections
  • Publications
  • Research Data
  • People
  • Institutions
  • Projects
  • Statistics
  1. Home
  2. TUHH
  3. Publication References
  4. Influence of Pore Size on Carbon Dioxide Diffusion in Two Isoreticular Metal–Organic Frameworks
 
Options

Influence of Pore Size on Carbon Dioxide Diffusion in Two Isoreticular Metal–Organic Frameworks

Publikationstyp
Journal Article
Date Issued
2020-04-06
Sprache
English
Author(s)
Forse, Alexander C.  
Colwell, Kristen A.  
Gonzalez, Miguel I.  
Benders, Stefan  
Torres-Gavosto, Rodolfo M.  
Blümich, Bernhard  
Reimer, Jeffrey A.  
Long, Jeffrey R.  
TORE-URI
http://hdl.handle.net/11420/8645
Journal
Chemistry of materials  
Volume
32
Issue
8
Start Page
3570
End Page
3576
Citation
Chemistry of Materials 8 (32): 3570-3576 (2020)
Publisher DOI
10.1021/acs.chemmater.0c00745
The rapid diffusion of molecules in porous materials is critical for numerous applications including separations, energy storage, sensing, and catalysis. A common strategy for tuning guest diffusion rates is to vary the material pore size, although detailed studies that isolate the effect of changing this particular variable are lacking. Here, we begin to address this challenge by measuring the diffusion of carbon dioxide in two isoreticular metal–organic frameworks featuring channels with different diameters, Zn2(dobdc) (dobdc4– = 2,5-dioxidobenzene-1,4-dicarboxylate) and Zn2(dobpdc) (dobpdc4– = 4,4′-dioxidobiphenyl-3,3′-dicarboxylate), using pulsed field gradient NMR spectroscopy. An increase in the pore diameter from 15 Å in Zn2(dobdc) to 22 Å in Zn2(dobpdc) is accompanied by an increase in the self-diffusion of CO2 by a factor of 4 to 6, depending on the gas pressure. Analysis of the diffusion anisotropy in Zn2(dobdc) reveals that the self-diffusion coefficient for motion of CO2 along the framework channels is at least 10000 times greater than for motion between the framework channels. Our findings should aid the design of improved porous materials for a range of applications where diffusion plays a critical role in determining performance.
TUHH
Weiterführende Links
  • Contact
  • Send Feedback
  • Cookie settings
  • Privacy policy
  • Impress
DSpace Software

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science
Design by effective webwork GmbH

  • Deutsche NationalbibliothekDeutsche Nationalbibliothek
  • ORCiD Member OrganizationORCiD Member Organization
  • DataCiteDataCite
  • Re3DataRe3Data
  • OpenDOAROpenDOAR
  • OpenAireOpenAire
  • BASE Bielefeld Academic Search EngineBASE Bielefeld Academic Search Engine
Feedback